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and Ozdemir, 1997). KFR NG FIRECE h 4w & A BRI . BRELERY™
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WEIER EEALF M AR, BEEER, M RANFENEL, EE TNz Pa
EIIREAEE . BRIXEE RSN, HAR RIS W 2 5 TR KA, 49 e
RSN KR NSIES = A MR 2R DL SR FOR S A 2 (Suavet et al.,
2008 )0 PRGN P21 2 MR R 0 P VA < e Y R

2. BEMET Y B EERAE RS

WFRAE KN KESNE REAR SR BAAIRE, filn, L35, 7T
TR S5 . BRGS0 I AR (AR BIURR, X S8 s i S ety (R
FETRERA FIARERE) L BRI A CRHERE™ L KB FNZF R0 L BRIARAL Y (I
PN RGN FIER BRI #h GRS di% T (1 Fe? Al Fed B T AR Bk
WA RS . Fe? Rl Fed* B 1 1A ) B T F 400 R B R AR (~0.01eV), 1R
BoRAE, BUESRE FE BURAE (9.27x1024 Am?) EE, XEeAp
RAEEEAR T HER RO o 1R Z RS AR T B 2L AR BU, XM
NIRRT PR T =S B B F B (Thompson and Oldfield, 1986). i,
PR Al SR IE R S I S AR R, e R R A A 2K
RIS IR (Cornell and Schwertmann, 2003; Guyodo et al, 2006a) (& 2),
17 3 Re A5 T K SO AL« A WU AE F B 6 SRR R AR Y0/ E F )45 B, (Insam and
Domsch, 1988). Z8ALIHE, HERD™ [m K2 BB (0 4% A0 mT LA 7 a7 WL [t
R I8 R R AR 4L 45 B Ce.g., Karlin and Levi, 1983; Canfield and Berner, 1987;
Roberts et al., 2011a).
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VOB BE b, MU I B8 7 2 FE B2 TH #E 0o, NOs (A A 4 #F ), MnOy, Fe0s,
FeOOH (REFKMT) , SO CO, (EFM), RLEHZHTHEZHE, ©
AR FH B P A E AT R34 5L a7 A2 1 M BEAR ) (Froelich et al., 1979). AL
JR I AR — ELRR LR B A TE VI, E2IFTA A HUR BE A R R . 9
WUT BB AR SR EAT, JOHR BT A B, A h RS (RO At & kA
Y1) R ERAGFI R ORGSR #iZ 0% (Canfield and Berner, 1987,
Karlin and Levi, 1983, 1985; Karlin, 1990a, b; Channell and Hawthorne, 1990;
Rowan et al., 2009) . AN[FRIBREENX BRI AR B IR NARE [ AR BE R/
U0« AKERE A MR REERE A 774K [Poulton et al., 2004].
SO ML J5 7= A RIS R ALY, AIVEVERRALY) (HaS A1 HS ) R IEZRIE I 7= AE Fe?*
IR, SR AV BB AT, A5 K 35250 (Roberts and Turner,
1993; Reynolds et al., 1994; 1999; Roberts et al., 2011a). V2kHE M B R 2R 1
TE L2 5 W R A g 2 B 1 A P A G AT I R (] 74 (cf. Sweeney and
Kaplan, 1973). Horng and Roberts (2006) NIAN/SEETE (hexagonal) WEFEEkN"
CHOAR A RARTENED R BEAE A 1R AT i, T BARTAR Y o RS e At
WESRRD™, B AR SRS A I E U F S B, R vy DAl /5 3 0 1
WA . FETETIMINEE T, BRI i, 2B i) COa Y AT E
W TR . 2RI Fe ] LAEVTARY o [A) B9 H0E 31058 2 8 O S A 5%
1, ARG R LR AL RUTR (Karlin et al., 1987), B 1 R RE40 3 A 00
{k.(e.g., Schiiler and Baeuerlein, 1996; Tarduno and Wilkison, 1996; Flies et al., 2005;
Roberts et al., 2011b). 5341, A LG AT RE44 K ES 75 ££ BB AT S0 PR, X2
TR HUOE B EMRE (FD RS EE0E P8 RIS IX
BRI B, R RR RO ME ER AR 1S BRI B 4R 4F (e.g., Henshaw
and Merrill, 1980).
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Bramante J F, Ford M R, Kench P S, et al. Increased typhoon activity in the Pacific deep tropics
driven by Little Ice Age circulation changes [J] Nature Geoscience, 2020, online.

https://doi.org/10.1038/s41561-020-00656-2
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ABSTRACT: The instrumental record reveals that tropical cyclone activity is sensitive to oceanic
and atmospheric variability on inter-annual and decadal scales. However, our understanding of the
influence of climate on tropical cyclone behaviour is restricted by the short historical record and
the sparseness of prehistorical reconstructions, particularly in the western North Pacific, where
coastal communities suffer loss of life and livelihood from typhoons annually. Here, to explore
past regional typhoon dynamics, we reconstruct three millennia of deep tropical North Pacific
cyclogenesis. Combined with existing records, our reconstruction demonstrates that low-baseline
typhoon activity prior to 1350 ce was followed by an interval of frequent storms during the Little

Ice Age. This pattern, concurrent with hydroclimate proxy variability, suggests a centennial-scale
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link between Pacific hydroclimate and tropical cyclone climatology. An ensemble of global
climate models demonstrates a migration of the Pacific Walker circulation and variability in two
Pacific climate modes during the Little Ice Age, which probably contributed to enhanced tropical
cyclone activity in the tropical western North Pacific. In the next century, projected changes to the
Pacific Walker circulation and expansion of the tropics will invert these Little Ice Age

hydroclimate trends, potentially reducing typhoon activity in the deep tropical Pacific.
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Figure 1. Western Pacific tropical cyclone reconstructions. a, Location of records in Figs. 1 and 2;
symbol definitions can be found in Extended Data Fig. 1. b, Radiocarbon dates (+1 standard deviation)

from South Pacific storm-deposited boulders?'?2. ¢, Storm deposits in a back-barrier reef lagoon,



Taha’a, French Polynesia?’. d, TC landfalls in Guangdong Province and imperial Chinese historical
records'’. e, Coarse fraction (black line) and centennial frequency (blue line) of large wave deposits at
Yongshu Reef!'!. f, Coarse fraction (250-2,000 um) anomaly (black line) from Jaluit Atoll and
centennial frequency (blue line) of identified storm deposits (red asterisks) (this study). The error in c, e

and f'is less than £0.05%, which is too small for plotting. Uncertainty estimates were unavailable for d.
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Figure 2. Comparison of our storm reconstruction with Pacific paleoclimate proxies. a, ENSO-band
standard deviation (SD) calculated in a 31-year moving window of a multi-proxy reconstruction of
Nifio 3.4 region SST anomalies?. b, Normalized ENSO-band SD of SSTs from coral 3'%0 proxies?®,

¢, Lipid 8D proxy of precipitation from Washington Lake, Washington Island, Northern Line Islands™.
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d, Ice accumulation rates in metres water equivalent (m.w.e.) in a core from the Quelccaya ice cap,
Peru33. e, Speleothem 8'%0 proxy of precipitation from cave KNI-51, northwestern Australia®. f,
CMIP5 ensemble median (black line) + standard error (grey shading) of decadally averaged PMM
wind index anomaly (this study). g, Comparison of age model histograms from samples indicated by
black asterisks in ¢ and h. h, same as Fig. 1f. The dashed black lines indicate 1000—1850 ce means and
the dotted black lines indicate zero values. The grey shading in a, b and e indicate 95% confidence

intervals. Uncertainty estimates unavailable for d.
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Figure 3. Change in tropical cyclogenesis potential from the MCA (1000-1300 ce) to the LIA
(1400-1700 ce). a,b, Ensemble median relative anomaly (A = (LIA - MCA)/MCA x 100%) of (a) GPI
and (b) VWS. Anomalies for all GPI components are plotted in Extended Data Fig. 5. Anomalies were
calculated from Northern Hemisphere storm season (JASON) averages. The black stippling indicates
that five of the seven models agree on change direction. The green symbols represent locations of

storm reconstructions (Extended Data Fig. 1)
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Heuer V B, Inageaki F, Morono, et al. Temperature limits to deep subseafloor life in the Nankai
Trough subduction zone [J]. Science, 2020, 370: 1230-1234.

https://doi.org/10.1126/science.abd7934
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ABSTRACT: Microorganisms in marine subsurface sediments substantially contribute to global
biomass. Sediments warmer than 40 °C account for roughly half the marine sediment volume, but
the processes mediated by microbial populations in these hard-to-access environments are poorly
understood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120 °C hot
sediments in the Nankai Trough subduction zone. Above 45 °C, concentrations of vegetative cells
drop two orders of magnitude and endospores become more than 6000 times more abundant than
vegetative cells. Methane is biologically produced and oxidized until sediments reach 80 ° to
85 °C. In 100 ° to 120 °C sediments, isotopic evidence and increased cell concentrations
demonstrate the activity of acetate-degrading hyperthermophiles. Above 45 °C, populated zones

alternate with zones up to 192 meters thick where microbes were undetectable.
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Figure 1. Depth profiles of vegetative cells and endospores in relation to environmental factors at [ODP
Site C0023. (A) Concentrations of vegetative cells determined by counting of microbial cells
fluorescently stained with SYBR Green 1. (B) Concentrations of bacterial endospores derived from
analysis of the diagnostic biomarker DPA; analytical sensitivity corresponds to a detection limit (DL)
of 2.2 x 10* endospores cm™>. (C) A schematic summary of temperature, tectonic units, and salinity
showing the geochemical influence of basalt alteration in the basement; red symbols on the temperature
axis designate the depth horizons where in situ temperature measurements were made. Gray shading
indicates zones where concentrations of both vegetative cells and endospores were undetectable in all

samples; the gray dashed line indicates the location of the SMTZ.
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Figure 2. Geochemical signals of microbial metabolism at Site C0023. (A to D) (A) Dissolved methane
(13) and sulfate (13), (B) methane/ethane ratios (13) and 8'*C-CH4, (C) dissolved acetate and
3!3C-acetate, and (D) potential rates of methanogenesis (MG) based on conversion of *C-CO:> to
14C-CHa; note that the value at 180 mbsf is off-scale. Potential MG (PMG) rates were determined at
40 °C for < 360 mbsf, 60 °C for 405 to 585 mbsf, 80 °C for 604 to 775 mbsf, and 95 °C for > 816 mbsf.
The MQL was 0.094 pmol CH4 cm™ day'. Gray shading, SMTZ, and the temperature axis are as in
Fig. 1. VPDB in (B) and (D) is the Vienna Pee Dee Belemnite standard. In (D), error bars represent the

standard deviation of three replicates.
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Verberne R, Reddy S M, Saxey D W, et al. The geochemical and geochronological implications
of nanoscale trace-element clusters in rutile [J]. Geology, 2020, 48: 1126-1130.

https://doi.org/10.1130/G48017.1
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%, H HLix 2 F % & A2t Ju 3 (AL Cr. Pb 1 V). FIAZI1 27Pb/2Pb ELAE Y 0.176 + 0.040
(200, KYCAVER TG, RN A PSP AR . ATy iz% 2
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ABSTRACT: The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is
routinely used to extract information on the nature and timing of geological events. However, the
mobility of trace elements can affect age and temperature determinations, with the controlling
mechanisms for mobility still debated. To further this debate, we use laser-ablation—inductively
coupled plasma—mass spectrometry and atom probe tomography to characterize the micro- to
nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western
Australia. At the >20 um scale, there is no significant trace-element variation in single grains, and

a concordant U-Pb crystallization age of 1872 £ 6 Ma (20) shows no evidence of isotopic
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disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements
(Al, Cr, Pb, and V) are observed. The 2’Pb/?%Pb ratio of 0.176 £+ 0.040 (20) obtained from
clusters indicates that they formed after crystallization, potentially during regional metamorphism.
We interpret the clusters to have formed by the entrapment of mobile trace elements in transient
sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would
affect the activation energy for volume diffusion of elements present in the cluster. The low
number and density of clusters provides constraints on the time over which clusters formed,
indicating that peak metamorphic temperatures are shortlived, <10 m.y. events. Our results
indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than

assuming a homogeneous medium.
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Figure 1. (A) Images of four atom probe tomography reconstructions showing Pb clusters (see Video
S1 [footnote 1]). (B) Close-up image of one of the Pb clusters from specimen 4, showing distribution of
206pp and 2°7Pb. (C) Box plots showing nearest-neighbor distribution of individual specimens and
combined values (red); number of clusters is given in parentheses. Box—interquartile range; horizontal

lines—minimum and maximum value of each quartile; horizontal line inside box—median;
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dots—potential outliers. (D) Proximity histogram based upon all 46 Pb clusters, showing profile of Pb,

Al, Cr, Nb, V, W, and Zr; error bars are lo.
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Figure 2. Schematic model for formation of Pb clusters in rutile based on radiation-damage
experiments (Trachenko et al., 2006). (A) a-decay creates two radiation damage zones: dilute and
severe. (B) Dilute damage recovers instantly due to a-healing. (C) Within a limited temperature
window, Pb can migrate over short distances in a severely damaged zone. If temperatures are too low,
there would be no migration and damage would recover over time. If temperatures are higher, Pb loss

might occur and damage recovery would be faster.
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Yamazaki T, Fu W, Shimono T, et al. Unmixing biogenic and terrigenous magnetic mineral
components in red clay of the Pacific Ocean using principal component analyses of first-order
reversal curve diagrams and paleoenvironmental implications [J]. Journal of Geophysical
Research: Solid Earth, 2020, 72: 120.

https://doi.org/10.1186/s40623-020-01248-5
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ABSTRACT: Red clay widely occupies the seafloor of pelagic environments in middle latitudes,
and potentially preserves long paleoceanographic records. We conducted a rock-magnetic study of
Pacific Ocean red clay to elucidate paleoenvironmental changes. Three piston cores from the

western North Pacific Ocean and IODP Hole U1365A cores in the South Pacific Ocean were
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studied here. Principal component analyses applied to first-order reversal curve diagrams
(FORC-PCA) reveals three magnetic components (endmembers EM1 through EM3) in a core of
the western North Pacific. EM1, which represents the features of interacting single-domain (SD)
and vortex states, is interpreted to be of terrigenous origin. EM2 and EM3 are carried by
non-interacting SD grains with different coercivity distributions, which are interpreted to be of
biogenic origin. The EM1 contribution suddenly increases upcore at a depth of ~ 2.7 m, which
indicates increased eolian dust input. The age of this event is estimated to be around the Eocene -
Oligocene (E/O) boundary. Transmission electron microscopy reveals that EM2 is dominated by
magnetofossils with equant octahedral morphology, while EM3 has a higher proportion of
bullet-shaped magnetofossils. An increased EM3 contribution from ~ 6.7 to 8.2 m suggests that the
sediments were in the oxic-anoxic transition zone (OATZ), although the core is oxidized in its
entire depth now. The chemical conditions of OATZ may have been caused by higher biogenic
productivity near the equator. FORC-PCA of Hole U1365A cores identified two EMs, terrigenous
(EM1) and biogenic (EM2). The coercivity distribution of the biogenic component at Hole
U1365A is similar to that of the lower coercivity biogenic component in the western North Pacific.
A sudden upcore terrigenous-component increase is also evident at Hole U1365A with an
estimated age around the E/O boundary. The increased terrigenous component may have been
caused by the gradual tectonic drift of the sites on the lee of arid continental regions in Asia and
Australia, respectively. Alternatively, the eolian increase may have been coeval in the both

hemispheres and associated with the global cooling at the E/O boundary.
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Figure 1. Principal component analysis (PCA) of frst-order reversal curve (FORC) diagrams for core
KR13-02 PCO06. a Distribution of 26 FORC data (squares) on the principal component PC1-PC2 plane.
Triangular dashed lines defne a three-endmember (EM) system, and the arrow indicates the general

downcore trend. b FORC diagrams for EM1, EM2, and EM3
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Figure 2. Downcore variations of FORC-PCA endmembers (EMs) and k4ri/SIRM for core KR13-02
PC06. a The proportion of EM1 (red), EM2 (blue), and EM3 (green). b SIRM (black) and the

contribution to SIRM of individual EMs calculated from the respective proportions. ¢ Variations of
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kars/SIRM. Note the synchronous changes of EMs and k4ry/SIRM at~2.7 m, and an EM3 increase

between~6.7 and 8.2 m.
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Figure 3. FORC-PCA results for samples from IODP Hole U1365A, South Pacifc Ocean. a Distribution

of 30 FORC data (squares) in PC1 space with two-endmembers (EM1 and EM2). The arrow indicates

the general downcore trend. b FORC diagrams for EM1 and EM2.
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Kapper L, Serneels V, Panovska S, et al. Novel insights on the geomagnetic field in West Africa
firom a new intensity reference curve (0-2000 AD) [J]. Scientific reports, 2020, 10(1): 1-15.

https://doi.org/10.1038/s41598-020-57611-9
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ABSTRACT: The geomagnetic field variations on the continent of Africa are still largely
undeciphered for the past two millennia. In spite of archaeological artefacts being reliable
recorders of the ancient geomagnetic field strength, only few data have been reported for this
continent so far. Here we use the Thellier-Coe and calibrated pseudo-Thellier methods to recover
archaeointensity data from Burkina Faso and Ivory Coast (West Africa) from well-dated
archaeological artefacts. By combining our 18 new data with previously published data from West
Africa, we construct a reference curve for West Africa for the past 2000 years. To obtain a reliable
curve of the archaeointensity variation, we evaluate a penalized smoothing spline fit and a

stochastic modelling method, both combined with a bootstrap approach. Both intensity curves
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agree well, supporting the confidence in our proposed intensity variation during this time span,
and small differences arise from the different methodologies of treating data and uncertainties.
Two prominent peaks at around 740 AD and 1050 AD appear to be common in ours and several
reference curves from other locations, indicating a general westward movement from China to
Hawaii of a rather stable feature of the geomagnetic field. However, independent smaller peaks
that do not correlate in different locations may hint to localized expressions of the geomagnetic

field as a result of temporarily varying non-dipole sources.
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Figure 1. Comparison of West African curves - smoothing spline fit (SSF) and stochastic modelling
curve as probability density function (pdf) - with the following global geomagnetic field models:

ARCHI10k.1, CALS10k.2, A FM-M, pfm9k.1a, GUFM1, HFM.OL1.A1, SHA.DIF.14k.
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Su M, Luo K, Fang Y, et al., Grain-size characteristics of fine-grained sediments and association
with gas hydrate saturation in Shenhu Area, northern South China Sea [J]. Ore Geology
Reviews, 2020, online.

https://doi.org/10.1016/j.oregeorev.2020.103889
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ABSTRACT: Fine-grained gas hydrate (GH) reservoirs are extensively studied worldwide,

among which the Shenhu Area (located on the northern slope of the South China Sea) is a
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world-class GH exploration area. However, the lithology, physical properties, and depositional
origins of the fine-grained GH reservoirs are not well known. Understanding how sediment
grain-size parameters affect the fine-grained GH reservoir quality could provide and important
breakthrough for reservoir evaluation. Eight cores, recovered from various expeditions of the
Guangzhou Marine Geological Survey, can be combined with 2D/3D seismic data to provide a
rare opportunity to systematically investigate the grain-size characteristics of the GH reservoir, as
well as the surrounding sediments.

A combination of lithology, grain size characteristics (mean size, sorting, skewness, kurtosis),
high-resolution seismic features, and associated bivariate and cluster analysis results support the
identification of two distinct intervals of fine-grained sediments that were deposited by different
sedimentary processes. There is a relatively higher content of coarser silt in the lower interval than
in the upper interval, and their boundary depths are highly consistent with those of the GH-bearing
layer and the overlying non-GH-bearing layer. With respect to the unconsolidated GH-bearing
sediments from Well G, both the porosity (52%—64%) and sorting coefficient (1.68-2.2) have
limited variation, while high GH saturation (>30%) occurs at the top layer. The positive
correlation between saturation and the coarsest one-percentile grain size (R=0.55) reveals that an
increase in the coarse fraction/particle size favours the development of a larger pore throat
diameter and improves the initial permeability and reservoir properties.

The seismic features and cross-plots of the coarsest one-percentile and median values
indicate that the lower thin-bedded fine-grained sediments with hydrate may be fine-grained
turbidite complexes, including channels/levees/lobes and mass transport deposits. If this is the
case, then it may be inferred that turbidite sediments provide good reservoir physical properties,
favourable for GH formation and accumulation. These insights into the relationship between the
Quaternary fine-grained turbidites and GH saturation may promote a clearer understanding of the
characteristics and development of fine-grained GH reservoirs globally, including in the Shenhu

Area of the South China Sea.
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Smekalova T, Bevan B, Kashuba M, et al. Magnetic surveys locate Late Bronze Age corrals [J].

Archaeological Prospection. 2020, online.

https://doi.org/10.1002/arp. 178914
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ABSTRACT: A new type of livestock enclosure from the Late Bronze Age has been discovered.
Stone walls outline a pair of circular or oval areas that may be up to 50 m in diameter. The stone
walls are invisible at the surface; they were discovered in north-western Crimea and only with the
aid of remote sensing and geophysical surveys. In the period 2007-2020, over two dozen of these
structures were found; none has ever been noted before. The locations of these sites were first
suggested in satellite imagery, often as areas with unusually green vegetation. Then, large-area
magnetic surveys delineated the buried stone enclosures, for there was a good contrast between
the non-magnetic limestone walls and the rather magnetic soil. The feature scan be identified by

the unique pattern of the walls: An almost-complete circular arc that is connected to a full circle or
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oval. The soil within the features has a high level of urease enzyme activity and a high
concentration of thermophilic microorganisms. This suggests the composting of animal dung and
plant residues; therefore, these were corrals and the raising of livestock was a part of the economy.
Only one of the doubled enclosures is found at most settlements; the livestock were probably
owned by all of the inhabitants. Each settlement had several dwellings, and these had earthen
basins whose edges were lined with vertical stone slabs. Several small-area excavations exposed
corral walls. Magnetic measurements of the soil and rock were the basis for magnetic models; the

calculated anomalies agree with the measurements of the magnetic maps.
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Figure 1. The magnetic anomaly of a circular ring. This calculated magnetic map approximates the
anomaly of a stone circle. The magnetic low above the ring changes little around the circumference.
However, the magnetic high to the north of the ring changes around the circumference; it is lowest on

the east and west sides of the ring.
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Son J H, Seo K H, Wang B. How does the Tibetan Plateau dynamically affect downstream
monsoon precipitation? [J].Geophysical Research Letters, 2020: 2020GL090543.

https://doi.org/10.1029/2020GL090543
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ABSTRACT: Recent studies have demonstrated that mechanical effects have a greater
contribution to the East Asian summer monsoon (EASM) than thermodynamical effects. However,
a theoretical basis for the underlying dynamical mechanism has not been elucidated. The present
study shows that topographically forced barotropic Rossby wave theory well explains the seasonal
evolution of the monsoonal precipitation and its amplitude and peak location. The subtropical
zonal wind impinging on the Tibetan Plateau is a key factor, and the resulting downstream
cyclonic and anticyclonic circulation anomalies form a peak zonal geopotential height gradient in
between, leading to the development of the meridional wind and the accompanying moisture
transport to the EASM region. As the season approaches the summer monsoon period, the peak
geopotential height gradient — thus the monsoonal rainband — shifts to the west from the western
North Pacific to East Asia. The findings in this study can be applied to subtropical monsoons

worldwide.

27



East Asian summer monsoon in MJJA
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Figure 1. Characteristics of the East Asian summer monsoon (EASM). (a) Climatological mean
precipitation and horizontal wind at 850 hPa in boreal summer (May to August), and (b) schematic of

the EASM.
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Figure 2. Vertical structure of the atmosphere around the Tibetan Plateau. Vertical and zonal
cross-section of (a) zonal wind (m s!) and (b) geopotential height (m), averaged over 25°-35°N during
May-August. The geopotential height anomaly is calculated by deviations from the zonal average at

each pressure level.
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ABSTRACT: An archacomagnetic, rock magnetic and magnetic fabric study has been carried out
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on seven anthropogenic ash horizons in the Middle Palaeolithic sedimentary level XXIV at the
rock shelter of Crvena Stijena (‘Red Rock”), Montenegro. The study has multiple goals, including
the identification of iron bearing minerals formed during combustion, assessment of the suitability
of these combustion features for recording the Earth’s magnetic field direction, revelation of the
magnetic fabric and its significance in the characterization of cave (rock shelter) burnt facies, and
identification of post-burning alteration processes. Magnetite has been identified as the main
ferromagnetic component of the ash. The ash layers exhibit a high thermomagnetic reversibility in
contrast to the irreversible behaviour of their subjacent burnt black layers which is related to the
different temperatures attained. Seven mean archaeomagnetic directions were obtained with
acceptable statistical values indicating that these features recorded the field direction at the time of
burning. However, some of them are out of the expected range of secular variation for mid-latitude
regions suggesting post-burning alterations. The magnetic fabric of the ash was characterized by
anisotropy of low field magnetic susceptibility measurements. Statistical analysis (box and
whisker plot) of the basic anisotropy parameters, such as foliation, lineation, degree of anisotropy
and the shape parameter, along with the alignment of the principal susceptibilities on stereoplots,
revealed variation among the ash units. The diverse, oblate to prolate, lineated or strongly foliated,
quasi-horizontally and vertically oriented fabrics of the units may indicate different slope
processes, such as orientation by gravity, solifluction, run-off water, quasi-vertical migration of
groundwater and post-burning/post-depositional alteration of the fabric by rockfall impact. In sum,
the magnetic characterization of the ash layers has shown the occurrence of different post-burning
alteration processes previously not identified at the site. Alteration processes in prehistoric
combustion features are often identified from macroscopic observations but our study
demonstrates that multiple processes can affect them and are usually unnoted because they take
place on a microscopic scale. Their identification is critical for a correct chronological and cultural
interpretation of a site (e.g. collection of samples for dating, stratigraphic displacement of
remains), especially if significant alterations are involved. Magnetic methods are therefore a
powerful but underutilized tool in palaeolithic research for the identification and evaluation of

taphonomic processes affecting prehistoric fires.
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Figure 1. Combination of processes which may contribute to the development of the MF in
anthropogenic burnt facies in cave successions. The ellipsoids on the stercoplots represent the
theoretical alignment of the principal susceptibilities based on the 95 per cent confidence ellipsoids in
the ash samples from Crvena Stijena succession (black—#max, dark grey—uxine and light grey—=#min

ellipsoids).
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ABSTRACT: As the world warms, there is a profound need to improve projections of climate
change. Although the latest Earth system models offer an unprecedented number of features,
fundamental uncertainties continue to cloud our view of the future. Past climates provide the only
opportunity to observe how the Earth system responds to high carbon dioxide, underlining a
fundamental role for paleoclimatology in constraining future climate change. Here, we review the
relevancy of paleoclimate information for climate prediction and discuss the prospects for
emerging methodologies to further insights gained from past climates. Advances in proxy methods
and interpretations pave the way for the use of past climates for model evaluation—a practice that

we argue should be widely adopted.
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Figure 1. Past climates (denoted on top) provide context for future climate scenarios (at bottom). Ma=
millions of years ago. Both past and future climates are colored by their estimated change in
globalmean annual surface temperature relative to preindustrial conditions. “Sustainability”, “Middle
road”,and “High emissions” represent the estimated global temperature anomalies at 2300 from the
SharedSocioeconomic Pathways (SSPs) SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. In both the

past andfuture cases, warmer climates are associated with increases in CO».
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mixtures of magnetite and hematite: the Inuyama red chert [J]. Journal of Geophysical
Research: Solid Earth, 2020, 125: e2020JB019518.
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Abstract: Magnetite and hematite mixtures occur widely in nature. Magnetic unmixing of the
signals recorded by these minerals can be important for assessing the origin of their respective
paleomagnetic remanences and for extracting geological and paleoenvironmental information.
However, unmixing magnetic signals from complex magnetite and hematite mixtures is difficult
because of the weak magnetization and high coercivity of hematite. We assess here the relative
effectiveness of first-order reversal curve (FORC) and extended FORC-type diagrams, FORC
principal component analysis (PCA), isothermal remanent magnetization (IRM) curve
decomposition, and PCA of remanent hysteretic curves for unmixing magnetic components in
samples from the magnetically complex Inuyama red chert, Japan. We also further characterize the
domain state and coercivity distributions of both magnetite and hematite with FORC-PCA and
IRM acquisition analysis in the red chert. We show that IRM curve decomposition can provide
valuable component-specific information linked to coercivity, while FORC-PCA enables effective

magnetic domain state identification. PCA of remanent hysteretic curves provides useful
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information about the most significant factors influencing remanence variations and subtle
coercivity changes. To identify components in complex magnetite and hematite mixtures, we
recommend PCA analysis of remanent hysteretic curves combined with FORC analysis of

representative samples to identify domain states and coercivity distributions.
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Figure 2. Comparison among FORC-PCA, IRM acquisition unmixing, and Mrh PCA results along the
PC2 axis of the FORC-PCA solution. (a) PC space for the FORC-PCA solution; (b, e) reconstructed
FORC diagrams using two PCs for the whole applied field range for samples KA1-2D-1 and
UN2-9B-1; (c, f) reconstructed FORC diagrams using two PCs for samples KA1-2D-1 and UN2-9B-1
for the 0 to 120 mT range ; and (d, g) IRM acquisition unmixing results for samples KA1-2D-1 and
UN2-9B-1. Blue, purple, green, and red lines represent components C1, C2, C3, and C4, respectively.
The yellow line represents the total magnetization. (h, i) Magnetization gradient of PC1 and PC2 from
Mrh PCA; brown and green lines represent results for samples KA1-2D-1 and UN2-9B-1,

respectively.
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ABSTRACT: This paper reviews the diversity of relationships between river evolution and
karstogenesis. It also underlines the fundamental role of numerical dating methods (e.g.
cosmogenic nuclides) applied to sedimentary sequences in tiered cave passages as they have
provided new insights into these complex interactions. Although karst terrain is widespread
worldwide, we focus on European karst catchments, where the sedimentary records are especially
well preserved. We review the recent dating of fluvial sediments and speleothems, to examine the
timing of karstification, incision and deposition in cave levels. The most complete alluvial records
occur in tectonically uplifted high mountains where some of the oldest sediment fills date to the
Miocene. Evidence indicates that not only uplift, but also climatic conditions and fluvial dynamics

(e.g. knickpoint retreat, increased channel flow and/or sediment load, and stream piracies) can
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play a major role in speleogenesis and geomorphological evolution. In evaporate rocks,
speleogenesis is characterized by rapid dissolution and subsidence. In European catchments,
gypsum cave development largely occurred during cold climate periods, while limestone caves

formed during warm interglacial or interstadial phases. Our synthesis is used to propose four

models of fluvial and karst evolution, and highlight perspectives for further research.

B: caves of Buchan, Australia; MC: Mammoth cave, USA; SN : Sierra Nevada, USA; M: Miaoxi River, Hunan, China; Q: Qianyou River, Qinling moun-
tains, China; W: Wujiang River, Guizhou, China; Y: Yangzi Gorge,Yunnan, China; Europe: 1: Arlanzdn, Spain; 2: Gallego River, Spain; 3: Tét valley,
Eastern Pyrenees, France; 4: Pierre-Saint-Martin, Western Pyrenees, France; 5: Lower Ardéche valley, France; 6: Middle Ardéche valley, France; 7:
Southern Larzac plateau, Grands Causses, France; 8: Tarn valley at Millau, Grands Causses, France; 9: Vercors, subalpine massif, France; 10: Mont
Granier, Grande Chartreuse, subalpine massif, France; 11: Siebenhengste, Switzerland; 12: Mur valley, Eastern Alps, Austria; 13: Monte Corcia,
Alpi Apuane, Italy; 14: Mount Orjen, Montenegro; 15: Gypsum karst of Sorbas, Spain; 16: Caves of Pierre-la-Treiche, Eastern Paris Basin, France;
17: Cave of Belle-Roche, Ardenne massif, Belaium

Figure 1. Location map of the karstic areas discussed in the text.
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Asefaw H A, Tauxe L, Koppers A A P, et al. Four-Dimensional paleomagnetic dataset:
Plio-Pleistocene paleodirection and paleointensity results from the Erebus Volcanic Province,
Antarctica [J]. Journal of Geophysical Research: Solid Earth, 2020, online.
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ABSTRACT: A fundamental assumption in paleomagnetism is that a geocentric axial dipole
(GAD) geomagnetic field structure extends to the ancient field. Global paleodirectional
compilations that span 0-5 Myr support a GAD dominated field structure with minor non-GAD
contributions, however, the paleointensity data over the same period do not. In a GAD field,
higher latitudes should preserve higher intensity, but the current database suggests that intensities
are independent of latitude. To determine whether the seemingly “low” intensities from Antarctica

reflect the ancient field, rather than low quality data or inadequate temporal sampling, we have
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conducted a new study of the paleomagnetic field in Antarctica. This study focuses on the
paleomagnetic field structure over the Plio-Pleistocene. We combine and re-analyze new and
published paleodirectional and paleointensity results from the Erebus volcanic province. to
recover paleodirections from 98 sites that were both thermally and AF demagnetized and then
subjected to a set of strict selection criteria and paleointensities from 26 from the Plio-Pleistocene)
sites that underwent the IZZI modified Thellier-Thellier experiment and were also subjected to a
strict set of selection criteria. The paleopole (201.85°, 87.65°) and 095 (5.51°) recovered from our
paleodirectional study supports the GAD hypothesis and the scatter of the virtual geomagnetic
poles falls within the uncertainty of that predicted by TKO03 paleosecular variation model. Our
time averaged field strength estimate, 33.57 uT + 2.71 uT, is significantly weaker than that

expected from a GAD field estimated by the present field.

A Lawrence et al 2009
45 ® This study
40 A A‘
[ ]
g 35 4 ®
oy
G &
£ 30 4 A
- A
251 A > A
20 A
T T T T T T T T
\2) ) o A ko) ) ) )
> Fo S Pk X S & &
% (% < (% (% (& (% (%
& & & & & & & &

Figure 1. Average intensity estimates for the sites in this study that passed CCRIT (blue circles) and the

sites from Lawrence et al. 2009 (white triangles) that passed their set of selection criteria.
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