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Dessandier P A, Knies J, Plaza-Faverola A, et al. Ice-sheet melt drove methane emissions in the
Arctic during the last two interglacials[J] Geology, 2021, 49(7), 799-803.

https://doi.org/10.1130/G48580.1

REL: IRALARUK) I IEZE AR BT AR A 1 77 SRk, H RTRES Bk UEAWTAR g, #
B (R 5T R e S BB AT S 0 4 BRUK 36 BV IR AR B IE S E . sk i T
UKIHEOKSE 2D, TR U4 BE v A1 808 — AN R vkK3Y] (BE4> 125 ka, Eemian) B
A F R URUE R AR B = o AR5, VRS R0 B4 7 UK ELRF R SR i A AL
(R FL R E AL FZ R I, AR 55— JORMBI R — IR UK IS RS, BROIE KR K 55
(R ARTH R 3 T H e At 5 o B be RO G A1 1 e e i A A AL
W 81C RIRRMRATAIL. HK, AL RF N ANRE A K E A RRER #h R I H
8180 fWIE, 77 813C. FEW KA 13 H R R AL AR 40 S 1 — A S[R3 5
DRI, BB ST R o fih o 1) o) SR P R I8 A 85 RS R 5 SRS B A4 07 B /R B 5 1 0
2 RN ORGP FE T T J5 R 2 AL Ja S 1t 3 2 7 1 IR UK 5 AN A 1 44
EHE O . SIXAMRBIER IR R, BEE H AT 22 Bk, vKEE Ty
NP AT 1 F BE it E AR T e S AR €

ABSTRACT: Circum-Arctic glacial ice is melting in an unprecedented mode, and
release of currently trapped geological methane may act as a positive feedback on ice-
sheet retreat during global warming. Evidence for methane release during the
penultimate (Eemian, ca. 125 ka) interglacial, a period with less glacial sea ice and
higher temperatures than today, is currently absent. Here, we argue that based on

foraminiferal isotope studies on drill holes from offshore Svalbard, Norway, methane
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leakage occurred upon the abrupt Eurasian ice-sheet wastage during terminations of the
last (Weichselian) and penultimate (Saalian) glaciations. Progressive increase of
methane emissions seems to be first recorded by depleted benthic foraminiferal §'*C.
This is quickly followed by the precipitation of methane-derived authigenic carbonate
as overgrowth inside and outside foraminiferal shells, characterized by heavy §'30 and
depleted 5'°C of both benthic and planktonic foraminifera. The similarities between the
events observed over both terminations advocate for a common driver for the episodic
release of geological methane stocks. Our favored model is recurrent leakage of shallow
gas reservoirs below the gas hydrate stability zone along the margin of western Svalbard
that can be reactivated upon initial instability of the grounded, marine-based ice sheets.
Analogous to this model, with the current acceleration of the Greenland ice melt,

instabilities of existing methane reservoirs below and nearby the ice sheet are likely.
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Figure 1. (A) Location map of Vestnesa Ridge, offshore Svalbard, Norway, where red arrow shows
the North Atlantic Current, and blue arrow shows the East Greenland Current. (B) Pockmarks, cores,

and seismic line used for chronostratigraphic correlation. (C) Location of studied core.
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Figure 2. (A) Seismic profile showing continuation of reflections between the reference site
MeBo126 and site MeBo125, Svalbard, Norway. mbsl - m below sea level. (B) Benthic (C. nreo -
Cassidulina neoteretis) and planktonic (N. pac - N. Neogloboquadrina pachyderma) foraminiferal
stable isotopes of cores MeBo125 and GC2 (cmbsf - cm below seafloor). (C) Closeup of last
deglaciation. VPDB - Vienna Peedeebelemnite. (D) Close-up of major seepage event over the
Eemian interglacial from the record of core MeBo125. (E) Planktonic foraminiferal (N. pachyderma)
stable isotopes of cores MeBo126 and GC3. SMOW - standard mean ocean water. Seismic profile
is the transect from inline 133 in the three-dimensional seismic volume used by Plaza - Faverola et
al. (2015). Seismic data were converted to depth using P-wave velocity information from Goswami

et al. (2017) and Singhroha et al. (2019). MIS - marine isotope stage.



2. BEARAEN FAR DTS Sunda JGHIBIREX K 6'%0 (H

BN G fengwy@sustech.edu.cn

Deegan F M, Whitehouse M J, Troll V R, et al. Sunda arc mantle source 080 value revealed by
intracrystal isotope analysis[J]. Nature Communications, 2021, 12:3930.

https://doi.org/10.1038/s41467-021-24143-3

FE: (s KL R A 088 RGN IE (% R T, (kT A A )
oy dhin FACFITR S, XAAEM R 7 HO YR X A B S SE s Ol N T FEIKHE
FEWAEFKAEH MR, AT 7K H EJE Sunda YL+ Merapi. Kelut. Batur A
o Agung KL PRI SRRHEAT G P9 KBS TS (SIMS) 880 i, Hrpih 5 T A A
Merapi ‘K 1111~ 30 km Ji/> % Agung ‘KL< 20 km. 2Z5HEKH, FRHEAF
8180 MRt 5% J5 5 B KT/, I H Agung KLk B A 28 ) He-Sr-
Nd-Pb [FIfZR A, Horp 5 BRI P R 1133 8150 H 9 5.7% (£ 0.2
1SD), HRFEHHEZEAE (MORB) (1) 880 EHEAHEX . % Sunda 5K T
8 4[R2 AL AN SZ A A AR s, DAL, el RBARER T — N30T
P IR TG o

ABSTRACT: Magma plumbing systems underlying subduction zone volcanoes extend
from the mantle through the overlying crust and facilitate protracted fractional
crystallisation, assimilation, and mixing, which frequently obscures a clear view of
mantle source compositions. In order to see through this crustal noise, we present
intracrystal Secondary Ion Mass Spectrometry (SIMS) 880 values in clinopyroxene
from Merapi, Kelut, Batur, and Agung volcanoes in the Sunda arc, Indonesia, under
which the thickness of the crust decreases from ca. 30 km at Merapi to < 20 km at
Agung. Here we show that mean clinopyroxene §*80 values decrease concomitantly
with crustal thickness and that lavas from Agung possess mantle-like He-Sr-Nd-Pb
isotope ratios and clinopyroxene mean equilibrium melt 5'80 values of 5.7 %o (+ 0.2

1SD) indistinguishable from the 580 range for Mid Ocean Ridge Basalt (MORB). The
9



oxygen isotope composition of the mantle underlying the East Sunda Arc is therefore
largely unaffected by subduction-driven metasomatism and may thus represent a

sediment-poor arc end-member.
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Figure 1. Arc-wide compilation of §'30 values in mafic minerals and equilibrium melts. a Map of
Java and Bali showing Moho depths estimated from Bouguer gravity anomalies (after ref. 40). The
Moho lies at ca. 18-20 km beneath Bali compared to ca. 25-30 km beneath Central to East Java. b
Box-and-whisker plots of pyroxene and olivine §'%0 values from volcanoes along the Java-Bali
segment of the Sunda arc, showing grain averaged SIMS clinopyroxene data for Merapi, Kelut,
Batur, and Agung (dark grey), pyroxene LF data for Salak’®, Gede®’, and Tjen*’, and olivine LF data
for Gede?, Ijen*’, and Batur (ref. 14 and this study). The number of analyses per volcano are given
in parentheses. ¢ Box-and-whisker plots of equilibrium melt 'O values calculated for the mineral
data shown in panel b by employing the silica-dependent fractionation formulations of ref. 24. The
clinopyroxene data suggest a parental melt §'%0 value of 5.7 %o (+ 0.2 1SD for the Sunda arc. For
most Javanese volcanoes, magmas are stored in the arc crust where they evolve while assimilating
crustal materials, resulting in variably elevated 6'30 values in clinopyroxene. Data plotting was
performed using the “ggplot2” package available via CRAN (Comprehensive R Archive Network;

https://cran.r-project.org/). Abbreviations: cpx, clinopyroxene; ol, olivine; px, pyroxene).
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Berrada M, Secco R A, Yong W. Adiabatic heat flow in Mercury's core from electrical resistivity
measurements of liquid Fe-8.5 wt% Si to 24 GPa[J]. Earth and Planetary Science Letters, 2021,
568, 117053.

https://doi.org/10.1016/j.epsl.2021.117053

WE: AAEIRT) 5-24 GPa, i L v T il FE I ELFE I & Fe8.5Si 1 L FH A K
WA K AR IR IR T REWAER - £ 6-8 GPa fIRIR I B AMYAT H
A RER A IE AR FIAHEEAE . K JI7E 10-24 GPa, 4 AlotR A4S I 47 Raluids it 1) ] 74
A AN 1) B PHL 28 AL P AR 127 pQremo 7K R AZ G 0 S (KR M (1 246 PPt A
THE 21.8-29.5 mW m2, iz & T K4 Fe-S B¢ Fe-Si %A, 1251l Fe AR,
B se gt AN IAGEACI Y, R B K 2 R AL IR Fr AR Bl 474 0.08-0.22 Gyr, X
I A% 748 STV 266 FA I 52 W0 I 3 () BRI 21 AR -3 BRI AR 3 0 ) — AR
1.

ABSTRACT: The effect of the core thermal conductivity on the heat flow along the
adiabat is investigated using direct measurements of electrical resistivity of Fe8.5Si at
pressures from 5-24 GPa and temperatures above melting. Unexpected behaviour at
low temperatures between 6-8 GPa may indicate an undocumented phase transition.
Measurements of electrical resistivity at melting seem to remain constant at 127 pQ-cm
from 10-24 GPa, on both the solid and liquid side of the melting boundary. The
adiabatic heat flow at the core side of Mercury's core-mantle boundary is estimated
between 21.8-29.5 mW m2, considerably higher than most models of an Fe-S or Fe-Si
core yet similar to models of an Fe core. Comparing these results with thermal evolution
models suggests that Mercury's dynamo remained thermally driven up to 0.08-0.22 Gyr,
at which point the core became sub-adiabatic and stimulated a change from dominant

thermal convection to dominant chemical convection arising from the growth of an
11



inner core.

Point # | Si (wt%) | Fe (wt%) [ Re (wt%)| W (wt%) [Total (wt%)
1 0.11 000 | 2595 | 73.87 99.92
2 0.11 0.00 020 | 98.81 99.12
3 0.11 0.02 020 | 99.37 99.70
4 0.11 0.01 0.21 99.35 99.68
5 523 [ 5820 | o012 36.28 99.83
20 GPa, 2122 K 6 531 | 6166 | 024 | 32.61 99.81
(140 K above T,,) 7 547 | 67.16 1.01 24.33 97.97
8 601 | 6719 | 008 [ 25.90 99.19
9 601 | 6777 | 021 2531 99.30
10 587 | 66.52 1.01 25.97 99.36
11 776 | 8384 | 0.03 7.67 99.30
12 773 [ 8330 | 0.6 7.92 99.00
13 766 | 8372 | 012 7.44 98.94
14 810 [ 87.10 | 0.00 4.02 99.22
15 797 | 86.16 | 0.04 4.69 98.86
16 801 | 8651 | 0.05 431 98.87
17 812 | 8819 | 0.02 2.19 98.51
18 814 | 8746 | 0.02 3.24 98.86
19 813 [ 8869 | 0.05 2.10 98.96
20 6.65 | 72.84 | 0.04 19.59 99.13
21 6.69 | 7368 | 0.06 18.14 98.57
2 6.09 | 6970 | 0.08 22.53 98.39
23 0.11 0.01 014 | 99.18 99.44
. 24 0.11 0.02 017 | 99.04 99.33
— 100pm UWO 11/5/2020 25 0.10 0.07 020 | 9829 98.67
20.0KV COMPO  NOR wp 10mm  09:40:02 |[E3 0.11 0.02 524 | 94.44 99.81

Figure 1. Cross-sectional view of a Fe-8.5S1 sample quenched from 20 GPa and 2122 K, along with

the chemical analysis. The sample, W-discs and TC are indicated on the cross-sectional view.
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Figure 2. (a) Electrical resistivity measurements of Fe-8.5Si at 8 GPa showing a hysteresis loop.
The starting material is labelled as Phase A. (b) Repeated runs at 6-8 GPa showing consistent
behaviour at low T. The T is first increased until approximately 1400 K, at which point the electrical
resistivity measurement reached the expected value (phase B). The sample is then slowly cooled
down to room T. Once at room T, the electrical resistivity value increases until it stabilises (phase

C). The T is increased a second time and a transition between phase C and phase B is observed.
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Figure 3. (a) The core adiabatic heat flux at Mercury's CMB for an Fe-8.5Si core calculated in this
study and shown by the shaded blue area, compared to the literature values for different
compositions. The data are labelled by the compositions and the letters give the reference. Reference
[a] Berrada et al. (2020), [b] Silber et al. (2019), [c] Ezenwa and Secco (2019), [d] Silber et al.
(2018), [e] Deng et al. (2013), [f] Knibbe and van Westrenen (2018), [g] Pommier (2019), [h]
Stevenson et al. (1983), [i] Schubert et al. (1988), [j] Christensen (2006), and [k] Tosi et al. (2013).
The * denotes theoretical studies. (b) Three models of heat flux through Mercury's CMB calculated
by Ogawa (2016) and Knibbe and van Westrenen (2017). The horizontal edges of the black dotted
rectangle show the range of qad determined in this study for a core composition of Fe-8.5Si. The
vertical edges of the black dotted rectangle show the corresponding range of ages of 0.08-0.22 Gyr
based on the three models plotted, before which the core was super-adiabatic and after which the

core is sub-adiabatic.
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Palencia-Ortas A, Molina-Cardin A, Osete M L, et al. Inclination flattening effect in highly
anisotropic archaeological structures from Iberia. Influence on archaeomagnetic dating/J].
Physics of the Earth and Planetary Interiors, 2021: 106762.

https://doi.org/10.1016/j.pepi.2021.106762
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ABSTRACT: In directional archaecomagnetic studies, it is rarely analysed whether the
combustion structures display anisotropy of their thermoremanent magnetization
(ATRM). It has been observed that, in specific cases like thin baked clays from the base
of small hearths, archaeomagnetic directions can also be disturbed by the ATRM. We
re-examine data from 56 combustion structures from Iberia and use them to analyse the
ATRM effect on their archacomagnetic directions. Flattening of inclinations up to 130
has been found in highly anisotropic structures that can be adequately corrected by the
ATRM tensors. We show how the lack of anisotropy corrections on directional values
can dramatically deteriorate the ages obtained from archacomagnetic dating,
highlighting the importance of systematically analysing this property in future

archaeomagnetic studies.
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Figure 1. Inclination and declination versus time at Madrid coordinates (data before/after ATRM
corrections in yellow/green) together with the SCHA.DIF.3k model for Europe (Pavon-Carrasco et
al., 2009) in red, PSVC by Hervé et al. (2013) in blue, PSVC by Molina-Cardin et al. (2018) in

green and PSVC by Osete et al. (2020) in purple.
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Fukuyo N, Oda H, Yokoyama Y, et al. High spatial resolution magnetic mapping using ultra-high
sensitivity scanning SQUID microscopy on a speleothem from the Kingdom of Tonga, southern
Pacific[J]. Earth, Planets and Space, 2021, 73, 77.

https://doi.org/10.1186/s40623-021-01401-8
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ABSTRACT: Speleothems are ideal archives of environmental magnetism and

paleomagnetism, since they retain continuous magnetic signals in stable conditions and
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can be used for reliable radiometric dating using U-series and radiocarbon methods.
However, their weak magnetic signals hinder the widespread use of this archive in the
field of geoscience. While previous studies successfully reconstructed paleomagnetic
signatures and paleoenvironmental changes, the time resolutions presented were
insufficient. Recently emerging scanning SQUID microscopy (SSM) in this field can
image very weak magnetic fields while maintaining high spatial resolution that could
likely overcome this obstacle. In this study, we employed SSM for high spatial
resolution magnetic mapping on a stalagmite collected at Anahulu cave in Tongatapu
Island, the Kingdom of Tonga. The average measured magnetic field after 5 mT
alternating field demagnetization is ca. 0.27 nT with a sensor-to-sample distance
of ~200 pm. A stronger magnetic field (average: ca. 0.62 nT) was observed above the
grayish surface layer compared to that of the white inner part (average: ca. 0.09 nT)
associated with the laminated structures of the speleothem at the submillimeter scale,
which scanning resolution of the SSM in this study is comparable to the annual growth
rates of the speleothem. The magnetization of the speleothem sample calculated from
an inversion of isothermal remanent magnetization (IRM) also suggests that the
magnetic mineral content in the surface layer is higher than the inner part. This feature
was further investigated by low-temperature magnetometry. Our results show that the
main magnetic carriers of the speleothem under study are magnetite and maghemite
and it can contain hematite or e-Fe;Os. The first-order reversal curve (FORC)
measurements and the decomposition of IRM curves show that this speleothem
contains a mixture of magnetic minerals with different coercivities and domain states.
The contribution from maghemite to the total magnetization of the grayish surface layer
was much higher than the white inner part. Such differences in magnetic mineralogy of
the grayish surface layer from that of the inner part suggest that the depositional

environment shifted and was likely changed due to the oxidative environment.
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Figure 1. a Photo of a half-split sample of a speleothem; b SSM measurements and 4C dating; and

¢ MPMS and AGM measurements.
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Figure 2. Optical and magnetic images of NRM and IRM and their analyses. a Optical image, b
magnetic image of NRM, and c optical image overlaid on the magnetic image of NRM. d
Distribution of magnetic field within the highly magnetic layer next to the surface and the layer
slightly inside with less magnetic feature. Each dataset was selected according to the region shown
in the inset figure on the upper-right; i.e., red and blue correspond to the magnetic and less magnetic
areas, respectively. e Optical image (contrast has been changed from a for better visibility of the
colored surface layers), f magnetic image of IRM (1.4 T), and g optical image overlaid on a magnetic
image of IRM (1.4 T). h Magnetic moment distribution of IRM image calculated on 0.2 mm x 0.2
mm grid points from the magnetic field in f. Magnetic moment distributions were calculated,
according to Weiss et al. (2007). i Line profile along a horizontal line in h at 20.1 mm of Y position.

The range of gray shade is the same as the range of a light green square in h.
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Huo Y, Peltier W R, Chandan D, et al. Mid-Holocene monsoons in south and southeast Asia:
dynamically downscaled simulations and the influence of the Green SaharalJ]. Climate of the
Past, 2021, (17), 1645-1664.

https://doi.org/10.5194/cp-17-1645-2021
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ABSTRACT: Proxy records suggest that the Northern Hemisphere during the mid-
Holocene (MH), to be assumed herein to correspond to 6000 years ago, was generally
warmer than today during summer and colder in the winter due to the enhanced seasonal
contrast in the amount of solar radiation reaching the top of the atmosphere. The
complex orography of both South and Southeast Asia (SA and SEA), which includes

the Himalayas and the Tibetan Plateau (TP) in the north and the Western Ghats
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mountains along the west coast of India in the south, renders the regional climate
complex and the simulation of the intensity and spatial variability of the MH summer
monsoon technically challenging. In order to more accurately capture important
regional features of the monsoon system in these regions, we have completed a series
of regional climate simulations using a coupled modeling system to dynamically
downscale MH global simulations. This regional coupled modeling system consists of
the University of Toronto version of the Community Climate System Model version 4
(UofT-CCSM4), the Weather Research and Forecasting (WRF) regional climate model,
and the 3D Coastal and Regional Ocean Community model (CROCO). In the global
model, we have taken care to incorporate Green Sahara (GS) boundary conditions in
order to compare with standard MH simulations and to capture interactions between the
GS and the monsoon circulations in India and SEA. Comparison of simulated and
reconstructed climates suggest that the dynamically downscaled simulations produce
significantly more realistic anomalies in the Asian monsoon than the global climate
model, although they both continue to underestimate the inferred changes in
precipitation based upon reconstructions using climate proxy information. Monsoon
precipitation over SA and SEA is also greatly influenced by the inclusion of a GS, with
a large increase particularly being predicted over northern SA and SEA, and a
lengthening of the monsoon season. Data-model comparisons with downscaled
simulations outperform those with the coarser global model, highlighting the crucial

role of downscaling in paleo data-model comparison.
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Figure 1. Shaded topography along with the outlines of the (shaded region) WRF and (white
rectangle) CROCO domains. The two black rectangles denote the regions used to calculate spatial
averages over SA and SEA. Major rivers and lakes are shown in grey contours, and selected

topographic heights are shown in thin black contours.
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Figure 2. 250 hPa winds (vector, m/s) and precipitation (shaded, mm/d) from the UofT-CCSM4 for
(a) the PI simulations and anomalies in (b) MHgrer and (¢c) MHgs. 850 hPa winds (vector, m/s) and
SST (shaded, °C) from the UofT-CCSM4 for (d) the PI simulations and anomalies in (¢) MHrgr and
() MHgs. Moisture flux (vector, kg/m?/s) and its convergence (shaded, kg/m3/s), with blue
indicating convergence (moisture sink) and red divergence (moisture source), for the PI simulations
of WRF—CROCO ensemble mean at (g) 250 hPa and (j) 850 hPa. Anomalies of moisture flux (vector,
kg/m?/s) and its convergence (shaded, kg/m?/s) for (h, k) MHREF and (i, 1) MHGS at (h, i) 250 hPa

and (k, I) 850 hPa. The topography contours of 500, 1000, 2000, and 4000 m are also shown.
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firom the magmatism in the Gan-Hang Belt, Southeast China/J]. Geological Society of America
Bulletin, 2021, 133, 1039-1056.

https://doi.org/10.1130/B35743.1
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ABSTRACT: Though it is widely accepted that the Paleo-Pacifc Plate has a subducted
beneath the eastern Asian continent, controversy still exists regarding the initial timing

and geodynamic model of the subduction. In this contribution, we report new
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geochronology and geochemical data of granitic plutons within the Gan-Hang Belt in
Southeast China. The Damaoshan pluton yields zircon U-Pb ages of 139.60 + 0.69 Ma
and 133.90 + 1.70 Ma, and the Qianshan and Fenglonggu plutons are dated at 135.70 +
1.30 Ma and 135.33 £+ 0.93 Ma, respectively. The Hecun and Huangtuling plutons yield
ages of 157.85 £0.77 Ma and 167.10 = 7.50 Ma, respectively. The Damaoshan pluton
has an obvious A-type geochemical signature in terms of major and trace element
compositions, such as high K>O + Na;O contents (average 8.46 wt%) and FeO1/MgO
ratios (average 10.29). The low CaO/NayO ratios but high AlbO3/TiO> (average is
110.05), Rb/Ba (average is 9.14), and Rb/Sr (average is 22.53) ratios indicate a
derivation from pelite-derived melt. Meanwhile, we also studied the Mesozoic adakites
related to magmatic ore formed during a compressive tectonic setting as well as the
later bimodal dikes and A-type granitic plutons formed during the extensional tectonic
setting in the Gan-Hang Belt. The multiphase qualitative plutons with geochemical
characteristics of the adakitic and island arc types (175-150 Ma) related to the
northwestward subduction of the PaleoPacifc Plate, several bimodal dikes, and A-type
granitic plutons (135-123 Ma) related to the subducted slab roll-back are found within
the Gan-Hang Belt. All of these plutons show a decreasing trend of isotopic ages from
the inland area to the coast, from SW to NE. We propose that the distribution pattern of
these plutons in Southeast China was controlled by a scissors-like subduction and slab
roll-back of the Paleo-Pacifc Plate, which occurred roughly from SW to NE along the

continental margin approximately during the Middle Jurassic to the Early Cretaceous.
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Figure 1. The distribution of the Mesozoic granites in the southeast South China Craton is shown
(modifed from Liu et al., 2016). The black arrow represents the subduction direction of Paleo-Pacifc
oceanic crust, and the purple arrow represents the migration of magmatism. The locations of the
faults are as follows: (1) Nantong-south of Liyang-south of LushanRuichang-Chongyang fault. (2)
Hangzhou-Xiangtan-JinxiuPingxiang fault, as the northwestern margin of the Qin-Hang Belt. (3)
Shaoxing-JiangshanPingxiang-Wuzhou-Hepu fault, as the southeastern margin of the Qin-Hang
Belt. (4) YuyaoLishui-Zhenghe-Dapu fault. (5) Tancheng-Lujiang fault. (6) Southern Dabie
Mountains fault. [-Southeast Coastal Belt; [[-Cathaysia Belt; I1I-Qin-Hang Belt (northeastern
segment named Gan-Hang Belt); IV-South China Inland Belt; V-middle-lower Yangtze River Belt;
VI-Sulu-Dabie Belt. The dashed line indicates the provincial boundary. Long blue arrow indicates

younging direction of the granites.
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Figure 2. Tectonic model shows the evolution of magmatism in late Mesozoic Southeast China.
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Ganbat A, Pastor-Galan D, Hirano N, et al. Cretaceous to Miocene NW Pacific Plate Kinematic
Constraints: Paleomagnetism and Ar—-Ar Geochronology in the Mineoka Ophiolite M élange
(Japan)[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021492.
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ABSTRACT: The Mineoka Ophiolite Mélange is located at the intersection of the
Pacific, Philippine Sea, Eurasian, and North American plates. The Mineoka ophiolite
origin is disputed, and it has been ascribed to a fully subducted plate or part of the
Pacific and Philippine Sea plates. In this paper, we present a kinematic reconstruction
of the Mineoka Ophiolite Mélange and its relation with the Pacific Plate, based on new

paleomagnetic data and bulk-rock “°Ar/*’Ar ages of basaltic rocks. In addition to
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standard analyses for paleolatitudes, we performed a Net tectonic rotation analysis on
sheeted dolerite dikes to infer the paleospreading direction that formed the ophiolite.
The analysis shows that 85-80 Ma MOR pillow basalts erupted at a paleolatitude of
~16°N, whereas ~50 Ma basalts formed at ~34°N. Net Tectonic Rotation analysis
suggests that the spreading direction was NE 60°. Ar-Ar ages yielded 53-49 Ma for
MORBSs and 41-35 Ma for island-arc basalts. The formation of this ophiolite occurred
in the back-arc spreading of the Nemuro-Olyutorsky arcs of the NW Pacific. It infers
that the final consumption of Izanagi below Japan instigated a subduction jump and
flipped its polarity. Subduction initiated parallel to the ridge, and a piece of the original
back-arc crust got trapped near the Japan trench during the northwards motion of the
Philippine Sea Plate. The contrasting motion between the Pacific and the Philippine Sea
plates generated a highly unstable setting followed by a subduction zone that left a

small-sized and short-lived plate (“Mineoka”), surrounded by subduction zones.
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Figure 1. Snapshots of the proposed plate-kinematic reconstruction of the Mineoka ophiolite at NW
Pacific region at ca. (a) ~85 Ma, (b) ~50 Ma, (c) ~30 Ma, and (d) ~15 Ma. The red lines represent
the reconstructed location of the subduction and triangles are subducting directions. Green lines

indicate the
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Olyutorsky-Pacific plate boundary and its putative isochron, which has originated as a back-arc after
the subduction initiation at ~85 Ma. The blue line marks the mid-ocean ridge between Izanagi and
Pacific plates. Pink polygons show Nemuro-Olyutorsky arc, light blue polygons outline newly
formed oceanic basins, and solid blue polygon marks Olyutorsky plate. The reconstruction follows

the mantle reference frame of Doubrovine et al. (2012).
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Figure 2. Schematic cross-sections of the proposed plate-kinematic reconstruction of the Mineoka
Ophiolite Mélange at NW Pacific region. Locations are shown in Figure 1. (a) ~85 Ma, the birth of
the Mineoka ophiolite in the back-arc spreading ridge of Nemuro-Olyutorsky arcs (b) ~50 Ma,
continuously forming Mineoka spreading ridge and demise of the Izanagi Plate under the East Asia
(c) ~30 Ma, ridge subduction of the Mineoka ridge thermally enhanced the northern Shimanto Belt
and the Pacific Plate is subducting under the Mineoka (d) ~15 Ma, Japan Sea opening and fragments

from the Mineoka, together with the Shimanto Belt accreted to Japan.
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Cai Y J, Cheng X, Ma L, et al. Holocene variability of East Asian summer monsoon as viewed
firom the speleothem 630 records in central China[J]. Earth and Planetary Science Letters, 2021,
558 116758.

https://doi.org/10.1016/j.epsl.2021.116758
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ABSTRACT: Monsoon precipitation in East China shows distinct spatial distribution

and its variability is closely linked with the changes of the East Asian summer monsoon
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(EASM). Located in the transition zone between the southern subtropical humid climate
and the northern warm temperate semi-humid climate, central China is a core region
for recognizing and understanding the spatio-temporal variability of the EASM. Using
U-series dating and stable isotope analysis on five stalagmites (MG-1, MG-2, MG-7,
MG-40 and MG-64) from Magou Cave, Henan Province, Central China, we construct
a high-resolution and precisely dated composite stalagmite 6180 time series covering
most of the Holocene. This composite record reveals variations in precipitation 6180
between 11.7 and 1.1 ka BP with average resolution of ~4 yrs. The Magou composite
record demonstrates that EASM intensity dominates long-term changes in precipitation
0180, which generally follows the northern hemisphere summer insolation (NHSI)
trend. Both, Ensemble Empirical Mode Decomposition (EEMD) and wavelet filtering
analyses real that the amplitudes of long term (100-500 and 500-3000 yrs) components
were slightly reduced between 8.5 and 4.9 ka BP, implying a weakened influence of
climatic forcings on centennial and even millennial timescales during this warm period.
Variance on 1-30-yr timescales is relatively low and ascribed to sampling resolution.
Fourteen weak EASM intervals, including the 8.2 ka event, were identified within the
period corresponding broadly with the Holocene Megathermal. Since no cold
excursions other than the 8.2 ka event are found in the Greenland ice core records, we
tentatively propose that oscillations in tropical sea surface temperature (SST) likely
play an important role in steering other weak monsoon events. Aligning the Magou
composite record and other moisture records with archaeological records from the study
region, it seems that climate change influenced both the spatial distribution and
agricultural practices of ancient cultures. However, overall moderate climatic changes
in this region, most likely characterized by shifts between subtropical humid climate
and warm temperate semi-humid climate, supported a generally consecutive

development of ancient cultures without major hiatuses.
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Figure 1. Overview map with the location of the studied cave and relevant records. The topographic
map is based on GTOPO 30 data (U.S. Geological Survey’s EROS (Earth Resources Observation
and Science; http://eros.usgs.gov/#/Find_Data/Products_and _ Data_Available/gtopo30_info) Data
Center). White and purple arrows indicate mean summer and winter wind fields at 850 hPa from
1981 to 2010 (NCEP Reanalysis Derived data provided by NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, http://www. esrl.noaa.gov/psd/, Kistler et al., 2001). The location of Magou Cave
(MQG) is denoted by the red star (113°23°E, 34°19°N, ~422 m a.s.1.), all other records are denoted by
red circles: LM: Laomu Cave/Dongshiya Cave, 111°31’E, 33°48’N, ~840 m a.s.1.; JX: Jiuxian Cave,
109°6’E, 33°34°N, ~1495 m a.s.l.; SB: Sanbao Cave, 110°26’E, 31°40’N, ~1900 m a.s.l.; HS:
Heshang Cave, 110°25’E, 30°27°N, ~294 m a.s.l.; DG: Dongge Cave, 108°5’E, 25°17°N, ~680 m
a.s.l. The white shaded area indicates the Henan Province, largely representing the Central Plain of

China.
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Figure 2. The MG composite time series (a) from ~11.7-1.1 ka BP and derived EEMD components
(red) and wavelet band-pass components (black) (b-h). For the EEMD decomposition, noise of 0.2
standard deviations of the data is added for the ensemble calculation, with an ensemble number is
500. Five EEMD components (i.e. sum of components 1-3, sum of components 4-5, sum of
components 6-7, sum of components 8-9, and sum of components 10-13) are presented. The wavelet
band-pass components indicate the variation of speleothem §'%0 on different timescales and

correspond well with the EEMD components.
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Noriko T, Hiroshi I, Masaru N, et al. Magnetization structure of Nishinoshima volcano,
Ogasawara island arc, obtained from magnetic surveys using an unmanned aerial vehicle[J].
Journal of Volcanology and Geothermal Research, 2021, online.

https://doi.org/10.1016/j.jvolgeores.2021.107349
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ABSTRACT: Nishinoshima, a volcanic island in the Ogasawara (Bonin) island arc,
has intermittently erupted since November 2013 after a quiescence of nearly 40 years.
The three-dimensional (3D) magnetization structure of this growing volcanic island
was investigated for the first time by acquiring aeromagnetic data with an unmanned
aerial vehicle (UAV) system and subjecting the data to a 3D regularized inversion. The
aeromagnetic surveys, in September 2018 and June 2019, covered an area of about 3
kmx3 km that included the emergent part of Nishinoshima volcano. We extracted the

magnetic anomaly induced by the magnetization structure from the observations and
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estimated the magnetization structure from the anomaly by applying the 3D inversion,
which combines L1 and L2 norm regularizations. We conducted a cross-validation to
simultaneously determine optimum values of a regularization parameter and a
hyperparameter. We found that Nishinoshima volcano had an average magnetization of
about 3.0 A/m and that two more strongly magnetized bodies existed as of 2019 beneath
the summit crater and the northeastern flank at depths several hundred meters below
the surface. These features may represent massive bodies of old chilled magma. This
study demonstrated the utility of this relatively safe and inexpensive observation
method and this data analysis method for investigating the magnetic structure of remote
volcanic islands. Repeated future surveys of this type may enable us to monitor volcanic

activities that affect the magnetization structure of volcanoes.
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Figure 1. Magnetic anomalies obtained by (a) subtracting the main magnetic field from the observed
magnetic intensity, (b) assuming a constant magnetization of 3.0 A/m in Nishinoshima volcano, and
(c) subtracting (b) from (a). Black lines are topographic and bathymetric contours; contour interval

20 m.
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Kaboth-Bahr S, Bahr A, Yamoah K A, et al. Rapid humidity changes across the Northe;'n .S"outh

China Sea during the last ~40 kyrs[J]. Marine Geology, 2021. 106579.

https://doi.org/10.1016/j.margeo.2021.106579
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ABSTRACT: A key aspect of East Asian climate is its summer monsoonal system
which influences nearly one-third of the world's population. Recent results indicate that
the primary response of the East Asian summer monsoon (EASM) to anthropogenic
forced climate warming may be a shift in geographical range instead of an intensity
change, which would lead to spatial coexistence of floods and droughts over
southeastern Asia. The predicted EASM variability in the future has made it paramount

to study its past changes and the associated tempo-spatial pattern of aridity and
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humidity in its purview. In order to decipher past changes in EASM, we applied a multi-
proxy geochemical approach to the sediment core ORI-891-16-P1 located in the
northern South China Sea. The position of this sediment core on top of a seamount
makes it uniquely sensitive to changes in the terrigenous input into northern South
China Sea unbiased by sea level-induced downslope transport processes. Utilizing the
In(Ti/Ca) ratio throughout the sediment sequence we trace terrigenous influx changes
reflecting EASM prevalence during the last ~40 kyrs. Based on the comparison of our
results to previous studies we infer that the Last Glacial Maximum (LGM; ~20 ka BP)
was characterized by a steep N-S humidity gradient. This spatial pattern was in line
with a southward shift or contraction of the summer monsoonal trough of 10-15° from
its current position toward the centre of the South China Sea. Superimposed on orbital
time scale fluctuations we also find strong indication of millennial-scale variability
related to Heinrich Stadials. The impact of Heinrich Stadials on the EASM seems
amplified during insolation minima, while high summer insolation seems to buffer the
monsoonal system to such perturbations. We infer that (i) the humidity-aridity
distribution during the LGM mimics predictions of the proposed future EASM
configuration, and (ii) that the sensitivity of the EASM to weakening in the Atlantic

Meridional Overturning Circulation is the strongest since the last glacial.
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Figure 1. Bathymetric map of the South China Sea (SCS) with the investigated Site ORI-891-16-
P1 marked by yellow star. Other sites mentioned in the discussion are marked by grey dots. EAWM
= East Asian Winter Monsoon; EASM = East Asian Summer Monsoon; Adjacent countries of the
SCS: TW = Taiwan; CN = China; Lz = Luzon; MY = Malaysia; VN = Vietnam. Summer and autumn

ITCZ position marked solid orange and dotted orange line, respectively.
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Figure 2. Discussion. (A) Summer (21st June) insolation at 30°N (Laskar et al., 2004); (B) In(Ti/Ca)
ratio from Site ORI-891-16-P1 (this study); (C) terrigenous input from Site ORI-891-16-P1
calculated with 1.6 % opal content (lower line) and 9.4% opal content (upper line) (see section 2.6
for more details on terrigenous influx rate calculation; this study); (D) Smectite/Illite+Chlorite ratio
from Site MD12-3434 (Zhao et al., 2018); (E) composite 580 speleothem record from Chinese
caves Sanbao and Hulu (Wang et al., 2008). Temporal assignment of Holocene, TI, LGM and MIS
3 follows Lisiecki and Raymo, (2005). TI = Termination 1; LGM = Last Glacial Maximum.

Allocation of Heinrich Stadials (HS) follows Andrews and Voelker, (2018).
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Lloyd S J, Paterson G A, Thallner D, et al. Improvements to the Shaw-type absolute palaeointensity
method[J]. Frontiers in Earth Science, 2021, 650.

https://doi.org/10.3389/feart.2021.701863
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ABSTRACT: Palaeointensity information enables us to define the strength of Earth’s
magnetic field over geological time, providing a window into Earth’s deep interior. The
difficulties in acquiring reliable measurements are substantial, particularly from older
rocks. Two of the most significant causes of experimental failure are laboratory induced
alteration of the magnetic remanence carriers and effects relating to multidomain
magnetic carriers. One method that has been claimed to overcome both of these
problems is the Shaw method. Here we detail and evaluate the method, comparing
various selection criteria in a controlled experiment performed on a large, non-ideal
dataset of mainly Precambrian rocks. Monte Carlo analyses are used to determine an
optimal set of selection criteria; the end result is a new, improved experimental protocol
that lends itself very well to the automated Rapid 2G magnetometer system enabling

experiments to be carried out expeditiously and with greater accuracy.
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Figure 1. Schematic view of the data analyses process for the Shaw-type experiment using a
specimen from Mount Etna. Top row is the palaeointensity experiment, where any alteration to the
TRM1 demagnetisation spectra is corrected by multiplying by the ARM slope (ARMO/ARM1) to
produce TRM1*. Bottom row is a repeat experiment to test the validity of the ARM corrections.
This ARM validity check uses additional remanence acquisitions (TRM2 and ARM?2) and should
produce a unit slope. Note that the values shown in these figures are after vectoral subtraction of the

remanences at the maximum AF step.
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Figure 2. AF demagnetisation spectra of three specimens (6.1A, 2A and 3C) from site MD6. These
are vector subtracted as used in the calculation of the slopes (for information on residual

magnetisations, see Supplementary Figure S5).
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Péoppelmeier F, Gutjahr M, Blaser P, et al. Stable Atlantic Deep Water Mass Sourcing on Glacial-
Interglacial Timescales[J]. Geophysical Research Letters, 2021,48, e2021GL092722.

https://doi.org/10.1029/2021GL092722
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ABSTRACT: Increased deep ocean carbon storage is often invoked as the major sink
for lower atmospheric CO> concentrations during past ice ages. In order to improve the
understanding of the changes in ocean dynamics facilitating such increased oceanic
carbon storage, we assess the variability of deep water provenance in the Atlantic by
reconstructing authigenic Nd isotopes from North Atlantic site U1313 over the past
~100 kyr. Under consideration of these new constraints for the northern Nd isotope
end-member, we find only limited long-term variations in the meridional and intra-
basin water-mass gradients suggesting a prevalence of northern-sourced water (NSW)
throughout the past 100 kyr. Tentative results suggest that during the glacial period of
Marine Isotope Stage 4 NSW proportions even increased by additional ~15% in the
equatorial and Northeast Atlantic, calling into question the notion that cold climates

promote the expansion of southern-sourced water.
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Figure 1. Modern hydrography and site locations. New eNd data from site U1313 are compared to
records from M45/5 KL90 (Poppelmeier, Frank, et al., 2020), SU90-03 (Howe, Piotrowski, Noble,
etal., 2016), the Ceara Rise (ODP 929, Howe & Piotrowski, 2017; EW9209-1, Curry & Oppo, 1997)
and the composite of two sites from the Cape Basin (RC11-83 and TN057-21 (Piotrowski et al.,
2004, 2005)). Blue and red arrows indicate southern sourced water (SSW) and northern sourced
water (NSW), respectively. Purple arrows mark mixtures of NSW and SSW, with spirals indicating

areas of strongly mixed deep water.
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Figure 2. (a) Composite of all published (blue borders, Lang et al., 2016; Lippold et al., 2016;
Poppelmeier et al., 2018) and new eNd data of site U1313 in comparison to eNd data from SU90-
03 (Howe, Piotrowski, Noble, et al., 2016) about 1,000 m shallower than U1313 (Figure 1). U1313
data with black borders reflect samples affected by in situ alterations caused by detrital carbonates
during major Heinrich events. (b) dolomite/calcite ratios, which only extend back to 70 kyr BP

(Naafs et al., 2013).
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Figure 3. (a) Nd isotope records from the deep Atlantic covering the past 100 kyr. The Cape Basin
record is a composite of sites RC11-83 (Piotrowski et al., 2004) and TNO57-21 (Piotrowski et al.,
2005). Site U1313 data (past 35 kyr: Lang et al., 2016; Lippold et al., 2016; Poppelmeier et al., 2018)
are complemented by new data back to ~95 kyr BP. Data of ODP 929 and M45/5 KL90 are from
Howe and Piotrowski (2017) and P&ppelmeier, Frank et al. (2020), respectively. U1313 data with
red borders were excluded for the black line fit due to in situ alterations by detrital carbonate during
major Heinrich events. (b) Bottom water stable carbon isotope data (8'°C) of the Cape Basin
(TNO57-21, Charles et al., 1996), Ceara Rise (EW9209-1, 4,056 m water depth, proximal to ODP
929, Curry & Oppo, 1997; Figure S3), DSDP 607 (Ruddiman et al., 1989, with refined age model
cf. Figure S4), and SU90-03 (Chapman et al., 2000). Lines with error bands (95% confidence

interval) represent fits with a generalized additive model.
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Figure 4. Proportions of northern sourced water (NSW) at sites KLL90 (P&ppelmeier, Frank, et al.,
2020) and ODP 929 (Howe & Piotrowski, 2017) derived from a binary mixing model assuming
U1313 and the Cape Basin composite as northern and southern end-members, respectively.
Uncertainties are propagated with a Monte-Carlo approach from the confidence intervals of the end-
member records as well as KL90/ODP 929. The uncertainty of the Nd concentration end-members
are estimated to +£10% and are also incorporated in the Monte-Carlo error propagation.
Modern %NSW based on conservative water mass properties (Jenkins et al., 2015; Péppelmeier,

Blaser, et al., 2020) are marked on the left.
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