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Barker, A.D, Starr, A., van der Lubbe, J., et al. Persistent influence of precession on the northern
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ice sheet variability since the early Pleistocene [J] Science, 2022, 376, 961-967.

https://doi.org/10.1126/science.abm4033
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ABSTRACT: Prior to ~1 million years ago (Ma), variations in global ice volume were dominated
by changes in obliquity; however, the role of precession remains unresolved. Using a record of
North Atlantic ice rafting spanning the past 1.7 million years, we find that the onset of ice rafting
within a given glacial cycle (reflecting ice sheet expansion) consistently occurred during times of
decreasing obliquity whereas mass ice wasting (ablation) events were consistently tied to minima
in precession. Furthermore, our results suggest that the ubiquitous association between precession-
driven mass wasting events and glacial termination is a distinct feature of the mid to late Pleistocene.
Before then (increasing), obliquity alone was sufficient to end a glacial cycle, before losing its
dominant grip on deglaciation with the southward extension of Northern Hemisphere ice sheets

since ~1 Ma.
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Figure 1. 1.7 Myr of ice rafting across the NE Atlantic. Red circles represent interglacials (as
determined by our algorithm), blue diamonds represent onset of significant ice rafting (see orange-
filled curve), and orange diamonds represent the end of TIR events. (Top to bottom) Precession,
obliquity, IRD accumulation from ODP 983 on the LR04 age model (data have been smoothed and
detrended to highlight intervals of significant ice rafting), the LR04 benthic stack (histogram
represents values of d'®0 at time of each IRD onset, mean = 3.9 + 0.2%o as indicated by the
horizontal fill threshold of the LR04 curve), 18 to 25 kyr, 37 to 45 kyr, and 70 to 130 kyr filter
ouputs of log IRD (red) and the LR04 stack (blue). Note coherence between the LR04 stack and log
IRD on G-IG (41 kyr and subsequently ~100 kyr) time scales throughout the past 1.7 Myr (see also

fig. S17).
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Figure 2. Obliquity loses its grip on deglaciation. Red circles represent interglacials (numbered,

1G28 is a minimum in d'*0 associated with MIS 28) ( 12), white diamonds are deglacial transitions

with respect to d'80 (' 13), blue diamonds and vertical dashed lines represent onset of significant ice

rafting, and orange diamonds (and lines) represent the end of TIR events. Orange and blue double-

headed arrows highlight lengthening of glacial cycles to approximate multiples of the obliquity

period following the late occurrence of T17 (see text and Fig. 3, right-hand panel, 1000 to 1250 ka).



(Top to bottom) Log (Ca/Ti) from U1385 ( 16), ODP 983 IRD accumulation on a linear scale (note
cropped scale), obliquity and precession ( 26), integrated summer energy at 65°N, log IRD from
ODP 983 on U1385, U1476pMag, and LR04 age models, benthic foraminiferal d'*C and d'®O from
U1476 on its LR04 age model ( 13), the LR04 stack ( 14), and linear IRD on its LR04 age model.
Black triangles (bottom) highlight “nonterminating” TIR events (identified as T14.1, T15.1, and so
forth). Large black circles highlight shifts toward lighter values of benthic d'®0 in U1476 within
glacial intervals. Both of these shifts are aligned with coincident features in the records of benthic
d*C and IRD. Note that our algorithm does not assign a TIR event for T13 because IRD

accumulation does not subside sufficiently before MIS 2
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Shen X, Jian X, Li C, et al. Submarine topography-related spatial variability of the southern
Taiwan Strait sands (East Asia) [J]. Marine Geology, 2021, 436: 106495.

https://doi.org/ 10.1016/j.marge0.2021.106495
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ABSTRACT: The Taiwan Strait serves as a link between the East China Sea and South China Sea
in East Asia. Complex ocean dynamics, huge sediment inputs and distinct tectonic, climatic and
bedrock lithological settings of the two sides of the strait make it ideal for sediment source-to-sink
studying. While mud sediments in the strait have been well investigated, sand composition and
provenance remain understudied. Here, we present framework petrography and heavy mineral data

of sands from the southern Taiwan Strait and the adjacent representative rivers to characterize sand
6



provenance and depositional mechanisms. As expected, the SE China river sands are dominated by
quartz and feldspar, whereas sands from the westward-flowing mountainous rivers in Taiwan are
rich in lithic fragments and heavy minerals of metamorphic origin. The southern Taiwan Strait sands
show significant spatial variations in composition and texture of the framework grains and heavy
minerals. Framework grain-based provenance modeling results show that sands in the southwest
margin of Taiwan Strait (water depth of 3060 m) are mainly supplied by SE China rivers. Taiwan
mountainous rivers made prominent contributions to the central-western Taiwan Strait (40-60 m)
and the south of Taiwan Shoal (below 50 m), both of which are far away from the Taiwan island
(ca. 100-300 km away). Furthermore, sands from the Taiwan Shoal (20—-30 m) show extremely high
compositional maturity and are mainly composed of coarse, rounded quartz. These sands, previously
proposed as relict sediments, have been intensely altered by modern high-energy hydrodynamic
conditions and can also be interpreted as palimpsest sediments. These results demonstrate that
modern river-derived sands are eventually deposited in relatively deep-water regions in the strait,
rather than the shallow regions (Taiwan Shoal). We propose that the sand composition and
distribution are closely related to the submarine topography of the Taiwan Strait. Combining
previous mud belt investigations, we suggest that sands and muds tend to have different fates in
shallow continental shelves with complex climate, ocean current and seafloor landform conditions.
This study also highlights the importance of both modern and relict sands in the strait and our
findings are important to better understanding of shelf sedimentary systems with huge river-

sediment-input and high wave/tidal-current-energy.
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Figure 1. Schematic sediment source-to-sink model around the East China Sea continental shelf
and the Taiwan Strait. Simplified submarine topography was outlined. For sediment source, three
distinct types of sediment supply and transport systems develop in subtropical-tropical East Asia
(Bi et al., 2015; Jian et al., 2020b). Drainage basin bedrock lithology and morphology, tectonic
settings, climatic conditions, and anthropogenic activities determine the differences in sediment flux
and composition among these areas. Ocean currents and seafloor topography subsequently dominate
the fate of river-derived sediment deposited on continental shelf. Three profiles cross the ECS shelf
and the Taiwan Strait was marked with grey dashed lines. Profile (a) is at the south ECS shelf to the
north of the Taiwan Strait. Yangtze River-derived clays carried by southward China Coastal Current
(CCC) deposited along the Zhejiang-Fujian coast, and sediments derived by Taiwanese rivers are
carried northward by Taiwan Warm Current and deposit near northern Taiwan island in outer ECS
shelf. Profile (b) covers the Changyun Rise (water depth of 30 m) and the central-western Taiwan
Strait. Due to high yield and episodic events, Taiwanese fluvial sediments on the Changyun Rise
progressively prograde westward and form subaqueous delta (Liu et al., 2008a). Profile (c) indicates
that topography contributes a major impact of sands distribution in the southern Taiwan Strait. The
discharged sands of modern SE China rivers and Taiwanese rivers deposit in coastal region and are
blocked by shallow submarine topography of the Taiwan Shoal. With less modern rivers-derived
sediment, relict sediments are preserved in the Taiwan Shoal and experienced intensely alteration

by high-energy hydrodynamic conditions.
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Zhang X, Qiu W'Y, Jiang X Y, et al., Three-phase structure of the East Asia summer monsoon
during Heinrich Stadial 4 recorded in Xianyun Cave, southeastern China [J]. Quaternary Science
Reviews, 2021, 274, 107267

https://doi.org/10.1016/j.quascirev.2021.107267

HE: Heinrich 4 (HS4) 2R 22 UKEERM 6 IRFAF PR R K —IK, KAET 40-38.2ka
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kyr BP, $74E 1 720 o Az R0 sk R 56 B2 22 LB AT UK S 5 FL(INEEM) 7O -excess
EARITIC SRR “URAE 5 — 2, 5 EPERILA AL R TR A — 2. KR RK
W s RSP AR AL B i 445 B 1) 22 B BEM L o BAT R A BRI 45 B AT i 46
JEETARIEAH R LK AT K ST 2 R R Ok A B2 4H 1 3 B E e
ABSTRACT: The Heinrich Stadial (HS) 4 event was the largest of the six HS events and occurred
from 40.0 to 38.2 kyr BP (thousand years before present, where present = 1950 CE) recorded in
Greenland ice cores. However, its structure, forcings, and related global hydroclimate variation
remain poorly understood. Here, an 8-yr resolved stalagmite 3'80 record from Xianyun Cave,
southeastern China, is used to reconstruct the multidecadal-to-millennial-scale changes of the East
Asian summer monsoon (EASM) from 41.33 + 0.09 to 37.04 + 0.05 kyr BP. The Xianyun record

shows a corresponding weak monsoon interval from 40.04 £ 0.07 to 37.76 + 0.05 kyr BP during HS


https://doi.org/10.1016/j.quascirev.2021.107267

4 and is the first direct evidence in the Asian monsoon realm to clearly reveal a three-phase EASM
structure. The first phase began with a weakening monsoon from 40.04 + 0.07 to 39.54 + 0.06 kyr
BP, associated with a southward shift of the Intertropical Convergence Zone (ITCZ). The second
phase was a long weak monsoon, spanning 1.06 kyr from 39.54 + 0.06 to 38.48 + 0.05 kyr BP and
corresponding to an ice-rafted debris event in the North Atlantic Ocean and an intense pluvial phase
in Northeast (NE) Brazil, suggesting that the ITCZ lingered at its southernmost position during this
interval. Following the end of this phase, EASM was gradually enhanced for 720 yrs through 37.76
+ 0.05 kyr BP. The feature expressed in the Xianyun record agrees with the variations in low-latitude
climate signals recorded in the Northern Greenland Eemian Ice Drilling (NEEM) '"O-excess and
anti-phase matches with dry-wet transition recorded in NE Brazilian stalagmites. These relations
suggest multi-phased responses of tropical atmospheric/oceanic circulations to forcing from
northern hemisphere high latitudes. Our findings offer essential evidence for understanding low-
and high-latitude climate teleconnections and the relationship between the monsoon and the tropical

hydrologic cycle.
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Figure 1. (a) Comparison of 580 records between @) 580 ice of NGRIP record on GICCO5 timescales
(Svensson et al., 2008) and Chinese stalagmite records of (b) Dragon Cave (Dong et al., 2018), (c) Hulu
Cave (Wang et al., 2001), (d) Yongxing Cave (Chen et al., 2016), (e) Wulu Cave (Liu et al., 2018), (f)
Xianyun Cave (this study), and (g) Xiaobailong Cave (Cai et al., 2006). All records are plotted with their
own age models. 23°Th ages with error bars are color-coded by stalagmite records. Durations of phase 1,

2, and 3 of HS 4, based on Xianyun record are highlighted by vertical bars with colors of sky blue, ice
11



blue, and mint green, respectively. GIS 9 marks Greenland interstadial 9 interval. (For interpretation of

the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Figure 2. Comparison of records between (a) 580 ice of the NGRIP record on GICCO5 timescales
(Svensson et al., 2008); (b) §'80 of Xianyun Cave (this study); (c) ’O-excess of NEEM ice core on
GICCO5 timescales (Guillevic et al., 2014); (d) d180 of NE Brazil caves (Wendt et al., 2019). All records
are plotted with their own age models. 23°Th ages with errors bars are color-coded by stalagmite records.
Durations of phase 1, 2, and 3 of HS 4, based on Xianyun record are highlighted by vertical bars with
colors of sky blue, ice blue, and mint green, respectively. GIS 9 marks Greenland interstadial 9 interval.
(For interpretation of the color references in this figure legend, the reader is referred to the Web version

of this article).
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Nature, 2022, 605:629-639.

https://doi.org/10.1038/s41586-022-04420-x
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ABSTRACT: Concealed deep beneath the oceans is a carbon conveyor belt, propelled by plate
tectonics. Our understanding of its modern functioning is underpinned by direct observations, but
its variability through time has been poorly quantified. Here we reconstruct oceanic plate carbon
reservoirs and track the fate of subducted carbon using thermodynamic modelling. In the Mesozoic
era, 250 to 66 million years ago, plate tectonic processes had a pivotal role in driving climate change.
Triassic Jurassic period cooling correlates with a reduction in solid Earth outgassing, whereas
Cretaceous period greenhouse conditions can be linked to a doubling in outgassing, driven by high-
speed plate tectonics. The associated carbon subduction superflux into the subcontinental mantle
may have sparked North American diamond formation. In the Cenozoic era, continental collisions
slowed seafloor spreading, reducing tectonically driven outgassing, while deep-sea carbonate

sediments emerged as the Earth s largest carbon sink. Subduction and devolatilization of this
13



reservoir beneath volcanic arcs led to a Cenozoic increase in carbon outgassing, surpassing mid-
ocean ridges as the dominant source of carbon emissions 20 million years ago. An increase in solid
Earth carbon emissions during Cenozoic cooling requires an increase in continental silicate
weathering flux to draw down atmospheric carbon dioxide, challenging previous views and

providing boundary conditions for future carbon cycle models.
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Figure 1. Carbon area density in the oceanic lithosphere through time.
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Yang, H., Peng, X., Gooday, A.J., et al. Magnetic foraminifera thrive in the Mariana Trench.
Geochem [J]. Geochemical Perspectives Letters, 2022; 21, 23-27.

https://doi. org/10.7185/geochemlet.2212
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ABSTRACT: Unicellular magnetic microorganisms include magnetotactic bacteria and some
protist species. Although magnetosome magnetite in bacteria (prokaryotes) is well studied, little is
known regarding the characteristics and origin of magnetic minerals in protists (eukaryotes).
Stercomata stored within tests of the hadal foraminifera R. bilocularis from the Mariana Trench
(6980-10,911 m depth), contain magnetite crystals. As a result, this species can orient in accordance
with magnetic fields. The magnetite differs chemically and physically from that in the surrounding
sediments. The crystals also differ from bacterial magnetosomes in being of variable size, porous
structure, not arranged in chains, and encapsulated in a lipid membrane. Putting available evidence
together indicates a biological origin of the magnetite, although a sedimentary source cannot be
eliminated. This is the first record of a magnetic protist from hadal depths, opening a new window

for the biomagnetism in the Earth’s extreme environment.



Figure 1. Magnetite in the foraminifera R. bilocularis. (a) LM (light microscopy) image showing
the rusty colour of the organic walled test of R. bilocularis. (b) LM image of the larger chamber of
R. bilocularis stained with Rose Bengal, with fresh stercomata (waste pellets) and stained cytoplasm
concentrated just inside the aperture. (c) SEM image of a thin section of R. bilocularis from the
Challenger Deep with numerous stercomata (b) inside the test (s). Magnetite (m) is contained in the
stercomata. (d) Enlarged SEM image of the area indicated by the white rectangle in (c). Magnetite
(m) is contained in the stercomata (b), within the yellow box. Raman analysis position is marked
with a red dot. (¢) NanoSIMS elemental mapping of R. bilocularis. Blue = Si; Green = Fe; Red =
Ti. SEM-EDX elemental maps are presented in Figure S-15. (f) Raman spectral combined images
obtained from a stercome containing magnetite, indicating magnetite and organic carbon in
stercomata, respectively. (g, h, i) Secondary electron image of magnetite extracted from R.
bilocularis showing a euhedral and porous structure. L = carbon-containing membrane. (j) An
enlarged SEM image of the carbon-containing membrane enveloping the magnetite. L = carbon-

containing membrane, M = magnetite. (k) The elemental mapping of the area in white rectangular.
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Yi L, Hu B, Zhao J, et al. Magnetostratigraphy of abyssal deposits in the Central Philippine Sea
and regional sedimentary dynamics during the Quaternary[J]. Paleoceanography and
Paleoclimatology, 2022: e2021PA004365.

https://doi.org/10.1029/2021PA004365
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ABSTRACT: The Philippine Sea is a typical region of acolian dust reposition and is located within
the Western Pacific Warm Pool. Here, we use the paleomagnetic stratigraphy and the grain-size
distributions of Quaternary abyssal deposits in the Central Philippine Sea to investigate the factors
controlling regional sedimentary and paleoenvironmental changes. Our principal results are as
follows: (a) A reliable geochronologic framework for Quaternary sediments in the Central
Philippine Sea is established. (b) An eastward expansion of the regional depocenter in the Middle
Pleistocene is observed. (¢) The mean grain size of the abyssal sediments is 7-8 um, and there are

only minor differences between the sites. Comparison of the geochronological framework with
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various paleoenvironmental events during the Mid-Pleistocene Transition shows that sedimentary
processes can be correlated to a major transition in global climate which affected regions from the
Asian interior to the tropical Pacific, and that changes in aeolian sedimentation are likely the
predominant factor responsible. A derived grain-size proxy of the sedimentary dynamics and its
comparison with various paleoenvironmental proxies show that the relative contributions are
roughly estimated as 23%, 9%, and 68% for acolian inputs, oceanic circulation, and the tropical
Pacific zonal SST gradient, respectively, in the studied region. The relative importance of tropical
processes in abyssal sedimentary dynamics highlights the possibility of the long-term influence of
(sub)mesoscale eddies in the upper ocean, via regional upwelling and unique submarine topography,
on the deepest part (>5,000 m) of the Central Philippine Sea, from meteorological to geological

timescales.
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Figure 1. A mechanism explaining the linkage between regional sedimentary dynamics in the
Central Philippine Sea (PGSI) and El Nifio-Southern Oscillation (ENSO)-like changes. (a) sea
surface temperature (SST) distribution across the North Pacific. NECC, North Equatorial
Countercurrent; KC, Kuroshio Current. The circulation patterns are modified from You (2003) and
Keeling etal. (2010). The data are from the World Ocean Atlas 2013 (WOA2013) (Garcia
et al., 2013; Levitus et al., 2014). (b) Comparison of NECC intensity (bold line, from OSCAR data;
dashed line, simulated by a linear Rossby wave model) and the Nino 3.4 index anomaly (Zhao
et al., 2013). Gray line, annual bottom-water velocity in a region of [133.0°-134.5°E, 15.5°-16.5°N]
at 5,000 m water depth (this study), from the Simple Ocean Data Assimilation (SODA version 2.2.4),
which is an ocean reanalysis data set (Carton & Giese, 2008; Carton et al., 2000; National Center
for Atmospheric Research Staff, 2016), consisting of gridded variables for the global ocean. (c)

Location of sites with grain-size records and an upwelling-induced top-to-bottom linkage.
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van der Boon A, Biggin A J, Thallner D, et al. A persistent non-uniformitarian paleomagnetic field
in the Devonian?/J]. Earth-Science Reviews, 2022: 104073.

https://doi.org/10.1016/j.earscirev.2022.104073
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ABSTRACT: The Devonian has long been a problematic period for paleomagnetism. Devonian
paleomagnetic data are generally difficult to interpret and have complex partial or full overprints—
problems that arise in data obtained from both sedimentary and igneous rocks. As a result, the
reconstruction of tectonic plate motions, largely performed using apparent polar wander paths, has
large uncertainty. Similarly, the Devonian geomagnetic polarity time scale is very poorly

constrained. Paleointensity studies from volcanic units suggest that the field was much weaker than
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the modern field, and it has been hypothesised that this was accompanied by many polarity reversals
(a hyperreversing field). We sampled Middle to Upper Devonian sections in Germany, Poland and
Canada which show low conodont alteration indices, implying low thermal maturity. We show that
there are significant issues with these data, which are not straightforward to interpret, even though
no significant heating or remineralisation appears to have caused overprinting. We compare our data
to other magnetostratigraphic studies from the Devonian and review the polarity pattern as presented
in the Geologic Time Scale. Combined with estimates for the strength of the magnetic field, we
suggest that the field during the Devonian might have been so weak, and in part non-dipolar, that
obtaining reliable primary paleomagnetic data from Devonian rocks is challenging. Careful
examination of all data, no matter how unusual, is the best way to push forward our understanding
of the Devonian magnetic field. Paleointensity studies show that the field during the Devonian had
a similar low strength to the Ediacaran. Independent evidence from malformed spores around the
Devonian-Carboniferous boundary suggests that the terrestrial extinction connected to the
Hangenberg event was caused by increased UV-B radiation, supporting the weak field hypothesis.
A fundamentally weak and possibly non-dipolar field during the Devonian could have been
produced, in part, by true polar wander acting to maximise core-mantle heat flow in the equatorial
region. It may also have influenced evolution and extinctions in this time period. There are a large
number of paleobiological crises in the Devonian, and we pose the question, did the Earth’s

magnetic field influence these crises?
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Figure 1. Overview of biotic events and crises in the Devonian. Timescale from GTS2020 (Becker

etal., 2020), magnetic polarity in black (white) is normal (reversed), grey is unknown. Global events

from Becker et al. (2020, 2016), 8'3C is in reference to the Pee Dee Belemnite (PDB), §'30 is in

reference to the Vienna Mean Standard Ocean Water (VSMOW). Paleointensities from the PINT

database (Bono et al., 2022) and Shcherbakova et al. (2021), green (red) line is the field strength in

the Ediacaran (present day), large igneous provinces (LIPs) are after Racki (2020) and Ernst et al.,
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2021, Ernst et al., 2020. Characteristics: Tr = transgression, Re = regression, De = deepening event,
-313C = negative 8'3C excursion, +8'3C = positive §'3C excursion. Part of biosphere affected: M =
marine, T = terrestrial. To scale the volcanic pulses to the timescale of Becker et al. (2020), we used
the Devonian-Carboniferous boundary, Frasnian-Famennian and Givetian-Frasnian boundaries in
the fig. of Racki (2020). References : 1 - Kaiser et al. (2016), 2 - Pisarzowska et al. (2020), 3 -
Marshall et al. (2020), 4 - Hartenfels and Becker (2009), 5 - House (2002), 6 - Hartenfels and Becker
(2016), 7 - Percival et al. (2019), 8 - Becker et al. (2016), 9 - Becker and House (1997), 10 - Racki
et al. (2018), 11 - Carmichael et al. (2019), 12 - Ziegler and Sandberg (1997), 13 - House and
Kirchgasser (1993), 14 - Sandberg et al. (2002), 15 - Racki et al. (2004), 16 - Brett et al. (2011), 17
- Aboussalam and Becker (2011), 18 - Lottmann (1990), 19 - Becker and Aboussalam (2004), 20 -
Konigshof et al. (2016), 21 - DeSantis and Brett (2011), 22 - Suttner et al. (2021), 23 - Walliser
(1996), 24 - Brocke et al. (2016), 25 - Tonarova et al. (2017), 26 - Garcia-Alcalde (1997), 27 -
Becker et al. (2020), 28 - Becker and Aboussalam (2011), 29 - Chlupac and Kukal (1988), 30 -

Maltkowski and Racki (2009).
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Sweeney L, Harrison S P, & Vander M. Assessing anthropogenic influence on fire history during
the Holocene in the Iberian Peninsula [J]. Quaternary Science Reviews, 2022, 287, 107562.

https://doi.org/10.1016/j.quascirev.2022.107562
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ABSTRACT: The relative importance of climate change and human activities in influencing
regional fire regimes during the Holocene is still a matter of debate. The introduction of agriculture
during the Neolithic provides an opportunity to examine the impact of human activities on fire
regimes. Here, we examine changes in fire regimes across Iberia between 10,000 and 3500 cal. BP,
reconstructed using sedimentary charcoal records. We compare the regional fire history with
estimates of changes in population size, reconstructed based on summed probability distributions of
radiocarbon dates on archaeological material. We also compare the fire records and population
reconstructions with the timing of the onset of agriculture across the region as indicated by
archaeological data. For Iberia as a whole, there are two intervals of rapid population increase

centred on ca. 7400 and ca. 5400 cal. BP. Periods of rapid population growth, either for the region
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as a whole or more locally, do not closely align with changes in charcoal accumulation. Charcoal
accumulation had already begun to increase ca. 400 years prior to the onset of the Neolithic and
continued to increase for ca. 750 years afterwards, indicating that changes in fire are not directly
associated with the introduction of agriculture. Similarly, there is no direct relationship between
changes in charcoal accumulation and later intervals of rapid population growth. There is also no
significant relationship between population size and charcoal accumulation across the period of
analysis. Our analyses show that the introduction of agriculture and subsequent increases in
population are not directly linked with changes in fire regimes in Iberia and support the idea that

changes in fire are largely driven by other factors such as climate.
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Figure 1. Maps of Iberia showing the locations of the charcoal (A) and archaeological (B) sites.
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Braddock S, Hall B L, Johnson, J S, et al. Relative sea-level data preclude major late Holocene
ice-mass change in Pine Island Bay [J]. Nature Geoscience, 2022.

https://doi.org/10.1038/s41561-022-00961-y
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A LEILAE KD o

ABSTRACT: The rapidly retreating Thwaites and Pine Island glaciers together dominate present-
day ice loss from the West Antarctic Ice Sheet and are implicated in runaway deglaciation scenarios.
Knowledge of whether these glaciers were substantially smaller in the mid-Holocene and
subsequently recovered to their present extents is important for assessing whether current ice
recession is irreversible. Here we reconstruct relative sea-level change from radiocarbon-dated
raised beaches at sites immediately seawards of these glaciers, allowing us to examine the response
of the earth to loading and unloading of ice in the Amundsen Sea region. We find that relative sea
level fell steadily over the past 5.5 kyr without rate changes that would characterize large-scale ice

re-expansion. Moreover, current bedrock uplift rates are an order of magnitude greater than the rate

25



of long-term relative sea-level fall, suggesting a change in regional crustal unloading and implying
that the present deglaciation may be unprecedented in the past ~5.5 kyr. While we cannot preclude
minor grounding-line fluctuations, our data are explained most easily by early Holocene
deglaciation followed by relatively stable ice positions until recent times and imply that Thwaites

and Pine Island glaciers have not been substantially smaller than present during the past 5.5 kyr.
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Figure 1. Satellite imagery and photographs of study sites in the Amundsen Sea Embayment. a—c,
Left panel shows Edwards Islands (a), Lindsey Islands (b) and Schaefer Islands (c). Dashed lines in
photos on right panels denote raised marine beaches from which shell and bone samples were
collected. Photos are from sites corresponding to the red squares in adjacent imagery. Yellow stars
in a denote location of additional sampled islands (Photos provided in Supplementary Figs. 2, 3 and

6). Credit: a—c (left), WorldView-2/DigitalGlobe, a Maxar Company; a—c (right), Scott Braddock.

26



o
20 |- AEES_

— :@— _—— = — —= — Marine limit —

Q- - -
[
=15 -0~ g
) = >
9 -~
] =3 3
= 9
& 3TEL 3
Pl e Tiit
g 10 =828
© ST o0
o » 2 2
£iggé
T - scig
o 23 % 2 e

5r S 8 esd - — — ICESG (weak)

E} Schasfer AAA ICE6G (strong)

tapa ol _Mf Lindsey O @ — = W12 (weak)
’ W12 (strong)

Edwards [ [H[]
| !

0 I | 1 | | I | |
0 1,000 2,000 3,000 4,000 5,000 6,000 O 1,000 2,000 3,000 4,000 5,000 6,000

Calendar yr sp Calendar yr sp

Figure 2. RSL reconstruction and comparison with GIA models for the Amundsen Sea Embayment,
Antarctica. a, RSL curve based on radiocarbon ages of shells from raised beaches. All samples are
presented as calibrated radiocarbon ages for shells and bones with horizontal bars indicating 2-sigma
errors. The solid black line with associated bootstrap confidence intervals is an interpolation of the
shell data (see Supplementary Information) using the method of ref. 37. The horizontal dashed black
line represents the proposed regional marine limit (elevation of highest sampled beach) at 19 m.
Elevation errors (Methods) associated with radiocarbon samples are represented by vertical bars on
each data point and range from 0.3 to 0.7 m. Vertical error bars for Lindsey Island samples (0.3 m)
are smaller than symbols at this scale. b, Comparison of RSL data with GIA model predictions
derived using two different ice-history models (ICE-6G_C27,32 and W1228,33). For each ice-
history model, two curves are shown; these represent RSL change assuming either a strong (solid
lines, upper mantle viscosity=5x10°Pas) or a weak (dashed lines, upper mantle

viscosity = 5 x 10!° Pa s) Earth model. The lithosphere thickness is set at 71 km (ref. 34).
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Westhoff J, Sinnl G, Svensson A, et al. Melt in the Greenland EastGRIP ice core reveals Holocene
warm events[J]. Climate of the Past, 2022, 18(5): 1011-1034.

https://doi.org/10.5194/cp-18-1011-2022
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ABSTRACT: We present a record of melt events obtained from the East Greenland Ice Core Project
(EastGRIP) ice core in central northeastern Greenland, covering the largest part of the Holocene.
The data were acquired visually using an optical dark-field line scanner. We detect and describe
melt layers and lenses, seen as bubble-free layers and lenses, throughout the ice above the bubble—
clathrate transition. This transition is located at 1150 m depth in the EastGRIP ice core,
corresponding to an age of 9720 years b2k. We define the brittle zone in the EastGRIP ice core as

that from 650 to 950 m depth, where we count on average more than three core breaks per meter.
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We analyze melt layer thicknesses, correct for ice thinning, and account for missing layers due to
core breaks. Our record of melt events shows a large, distinct peak around 1014 years b2k (986 CE)
and a broad peak around 7000 years b2k, corresponding to the Holocene Climatic Optimum. In total,
we can identify approximately 831 mm of melt (corrected for thinning) over the past 10 000 years.
We find that the melt event from 986 CE is most likely a large rain event similar to that from
2012 CE, and that these two events are unprecedented throughout the Holocene. We also compare
the most recent 2500 years to a tree ring composite and find an overlap between melt events and
tree ring anomalies indicating warm summers. Considering the ice dynamics of the EastGRIP site
resulting from the flow of the Northeast Greenland Ice Stream (NEGIS), we find that summer
temperatures must have been at least 3+ 0.6 °C warmer during the Early Holocene compared to

today.
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Figure 1. Number of melt layers and lenses per century throughout the last 9700 years in the
EastGRIP ice core. Running means are shown as solid lines. (a) Melt layers (dark blue) and
uncertain melt layers (white). (b) Melt lenses (dark green) and uncertain melt lenses (white). (c)
Melt events, i.e., panels (a) and (b) stacked, including their uncertainties. Note that the bar
representing the period from 0 to 100 years b2k represents only 56 years, not 100 years like the

other bars, as our analysis begins in 1956 CE.
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Figure 2. (a) Percentage of a 165 cm sample affected by core breaks (orange bars, scale on the left
side), number of core breaks per meter (orange bars, scale on the right side), and running mean over
16.5 m (brown line). The broad peak between 650 and 950 m depth indicates the brittle zone. (b)
Certain melt events (black) and uncertain melt events (gray) corrected for potentially missed events

in the proximity of core breaks (orange).
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Figure 3. The layer thicknesses of melt layers are shown by the yellow, orange, and red bars (smaller
than 4 mm, between 4 and 8§ mm, and greater than 8 mm, respectively). To distinguish events
occurring within a short period, the layer thicknesses are indicated by circles (measured thicknesses
M are indicated by open circles, and thinning-corrected thicknesses M are indicated by closed
circles). Running means of 10 events are indicated by dashed (for measured thicknesses) and solid
(for thinning-corrected thicknesses) blue lines. Panel (a) shows events that were later compared to
tree rings, along with their dates in CE notation. (b) Individual layer thicknesses corrected for
thinning using the thinning function from Gerber et al. (2021) shown in (d). Stars in (c) mark
multiple events within 5-year periods (blue stars indicate two events, red stars indicate three or
more). Panels (e) and (f) show the millimeters of melt (blue bars, calculated from melt layer
thicknesses) per century (e) and millennium (f), potentially missed events due to core breaks
(orange), removed layers smaller than 1.54 mm (black), and the running mean (black line). Melt

layers around the year 986 CE are plotted in light blue.
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