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Kim H.J., Kang, S.M., Kay, J.E., et al. Subtropical clouds key to Southern Ocean teleconnections
to the tropical Pacific [J] Proceedings of the National Academy of Sciences, 2022, 119(34),
€2200514119.

https://doi.org/10.1073/pnas. 2200514119
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ABSTRACT: Excessive precipitation over the southeastern tropical Pacific is a major common bias
that persists through generations of global climate models. While recent studies suggest an overly
warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote
mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which
the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the
tropical Pacifi c that is mediated by a shortwave subtropical cloud feedback. Cooling the Southern
Ocean preferentially cools the southeastern tropical Pacifi c, thereby shifting the eastern tropical
Pacifi c rainbelt northward with the reduced precipitation bias. Regional cloud locking experiments
confirm that the teleconnection efficiency depends on subtropical stratocumulus cloud feedback.
This subtropical cloud feedback is too weak in most climate models, suggesting that teleconnections

from the Southern Ocean to the tropical Pacific are stronger than widely thought.
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Figure 1. The impact of Southern Ocean cooling on the tropical Pacific. The multimodel mean
responses averaged over years 101 —150 in (A) SST and ( B) precipitation for the ETIN-MIP SEXT
simulations. In A, the multimodel mean climatological surface winds are shown in arrows. The
respective right panel shows the eastern Pacific average in each model, with the multimodel mean
in black. Intermodel regression of the annual-mean (C) SST and (D) precipitation onto the upward
SWCRE over 65°S-45°S (SWCRE "SO) using historical simulations of 39 CMIP5 and 52 CMIP6
models averaged between 1980 and 2005 (SI Appendix, Table S1 for model list). The regression
coefficients are multiplied by two intermodel SDs of SWCRESO, comparable to the forcing
amplitude of ETIN-MIP SEXT (SI Appendix, Fig. S1), to ease comparison with the ETIN-MIP
results. The respective right panel shows the eastern Pacific (230°E-300°E) average. The region
with the regression coefficients statistically different from zero is unhatched in the maps and denoted
as thicker lines for the eastern Pacific average, determined via two-sided Student t test with 95%
confidence interval. In A and C, the forcing region between 65°S and 45°S is indicated by blue
rectangles, and the triangular cooling patch is marked by yellow triangles. In B and D, the
multimodel mean position of the climatological eastern Pacific ITCZ, defined by the precipitation
maximum, is denoted with a cross symbol. The contours in maps indicate the corresponding
multimodel mean climatology.
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Figure 2. Schematic of Southern Ocean—tropics teleconnection mechanism. The Southern Ocean
cooling propagated into the subtropics by the atmospheric eddies and oceanic Ekman transport is
(1) further advected equatorward by the climatological southeasterlies (black arrow) west of South
America. The southeastern Pacific cooling is amplified by the interactions between (2) WES
feedback, (3) subtropical stratocumulus cloud feedback, and (4) coastal upwelling. The eastern
equatorial Pacific cooling is further intensified via Bjerknes feedback. As a consequence, the
triangular cooling patch extending from the southeastern Pacific to the zonal band across the
equatorial Pacific is manifested by the Southern Ocean—driven teleconnection, inducing the
northward shift of the eastern Pacific ITCZ.
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Thibon F, Goedert J, Séon N et al. The ecology of modern and fossil vertebrates revisited by
lithium isotopes [J]. Earth and Planetary Science Letters, (2022), 599, 117840.
https://doi.org/10.1016/].epsl.2022.117840
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ABSTRACT: The vertebrate fossil record documents a plethora of transitions between aquatic and
terrestrial environments but their causes are still debated. Quantifying the salinity of living
environments is therefore crucial for precising the sequence of ecological transitions. Here, we
measured lithium stable isotope composition of mineralized tissues (8’Lim) of extant and extinct
vertebrates from various aquatic environments: seawater, freshwater/terrestrial, and “transitional
environments” (i.e. brackish waters, or seasonal access to freshwater and seawater). We report
statistically higher 8’Lim values for seawater vertebrates than freshwater ones, taxonomic groups
considered separately. Moreover, vertebrates living in transitional environments have intermediate
&"Lim¢ values. Therefore, we show that §’Lin values of both extant and extinct vertebrates can

discriminate their aquatic habitat.
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Figure 1. 8’Lin, values of modern and fossil vertebrates including Chondrichthyes, Osteichthyes,
Mammalia, Reptilia, and Amphibia.Each icon represents an independent individual, except when tooth
and bone from the same individual were sampled. Squa. for Squamata, Test. for Testudinea, Amph. for
Amphibia. Vertebrates living in seawater have, on average, higher 8'Lin values than those living in
intermediate environments, which in turn display higher 8’Lin values than vertebrates depending on

freshwater. SD are included in the size of the markers.
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Guo B, Nie J, Stevens T, et al. Dominant precessional forcing of the East Asian summer monsoon
since 260 ka [J]. Geology, 2022. https://doi.org/10.1130/G50206.1
https://doi.org/10.1130/G50206.1
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ABSTRACT: One of the most perplexing problems in paleoclimate research is how orbital
cyclicities force East Asian summer monsoon (EASM) precipitation variation over the middle to
late Quaternary. Chinese loess records suggest that EASM precipitation was dominated by 100 k.y.
cycles controlled by Northern Hemisphere ice sheet forcing. In contrast, speleothem records suggest
that EASM precipitation was dominated by 23 k.y. cycles caused by Northern Hemisphere summer
insolation forcing. In order to resolve this inconsistency, we present high-resolution paleoclimate
records from Xijin drill cores on the western Chinese Loess Plateau for the past 260 k.y., the rough
upper limit of luminescence dating. Magnetic susceptibility (y) shows clear 23 k.y. precessional
cycles over interglacials but has constant low values over glacials. This is interpreted as indicating

a lack of pedogenesis, such that y cannot record EASM precipitation variations, rather than an
6



absence of EASM variation itself. To circumvent this issue, we use inversed sand content as an
alternative proxy for EASM precipitation over glacials and splice this with the interglacial
logarithmic y from Xijin drill cores. This new record reveals dominant 23 k.y. cycles over both
interglacials and glacials, consistent with speleothem 'O data and dominant insolation forcing.
These findings allow a consistent understanding of EASM variability and forcing mechanisms from
both loess and speleothem archives, resolving one of the largest debates in past monsoon research.
These results challenge suggestions of high-latitude ice sheet forcing of the EASM based on slowly

accumulated loess records from the central Loess Plateau.
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Figure 1. Map showing the geographic setting of the Chinese Loess Plateau (CLP) and surrounding
mountains, deserts, and rivers. Location of the Xijin loess core in Lanzhou Basin (red circle) is shown
together with locations of representative loess sections on the CLP mentioned in the text (black circles).
Magenta dashed lines represent modern mean annual precipitation isohyets. Inset map shows location of

the CLP in relation to the Tibetan Plateau and modern Asian atmospheric circulation systems.
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Figure 2. Establishing an age model for magnetic susceptibility (y) and content records of Xijin cores
by correlating them to independently dated y (purple lines) and grain-size records (blue lines) on the
Chinese Loess Plateau. (A) Mean-grain-size and y records from the Jingyuan section based on high-
resolution luminescence dating (black dots with vertical bars show ages and uncertainties [15]. (B) Sand
content and y results of Xijin cores. (C) x records based on high-resolution luminescence dating (black
dots with vertical bars show ages and uncertainties) of five loess profiles at Jingbian; gray shading
associated with the y curve indicates age model uncertainties. We note that paleosol S2 in Xijin is
associated with three y peaks (S2-1, S2-2, and S2-3), but only two are shown at Jingbian.Therefore, we
established two age models for Xijin by assuming that either S2-1 or S2-2 was not recorded in Jingbian
due to erosion associated with sand movement. Aligning patterns are indicated by dashed red lines, with
the tie age points (ka) shown as numeric labels. (D) Loess accumulation rate records in Xijin based on
two age models. L1, S1, L2, and S2 represent, from the top, loess layer 1, paleosol 1, loess layer 2, and

paleosol 2, respectively.
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Figure 3. Time series (left) and power spectral results (right) of East Asian summer monsoon (EASM)
records, based on different proxies, and summer insolation since 260 ka. (A) Magnetic susceptibility ()
record in the Luochuan (LC) section from the central Chinese Loess Plateau (CLP). (B,C,E,F) x (purple
lines) and sand content (>63 pm [%]; blue lines) records in the Xijin (XJ) loess core under two age
models. (D,G) Spliced EASM record based on the two age models (pink lines). (H) Northern Hemisphere
summer insolation at 65°N (black lines). (I) Chinese speleothem 3180 records (green lines). Gray bars
in the time-series data and power spectra highlight intervals of low summer insolation over the past 260

k.y. and main orbital cyclicities (100, 41, and 23 k.y.), respectively.
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Czarnecki S, Hardgrove C, Arvidson R, et al, Hydration of a clay-rich unit on Mars, comparison
of orbital data to rover data [J]. Journal of Geophysical Research: Planets, 2022.
https://doi.org/10.1029/2021JE007104
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ABSTRACT: Glen Torridon (GT) is a geomorphic feature of Aeolis Mons (informally Mt. Sharp)
in Gale crater, Mars, variably covered by local regolith and wind-blown basaltic sands. The Mars
Reconnaissance Orbiter’s Compact Imaging Spectrometer for Mars (CRISM) detected clay
minerals in GT, making GT a target of investigation by the Mars Science Laboratory (MSL) rover,
Curiosity, which confirmed a large abundance of clays. The MSL Dynamic Albedo of Neutrons
(DAN) instrument observed enrichments in bulk subsurface ( < 50 cm) hydration along the rover
traverse compared to lower stratigraphic sections of Mt. Sharp. Here, we investigate the relationship

between the CRISM 3 um hydration index and DAN results, taking into consideration the different
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spatial scales and effective depths of these two instruments. We show that the elevated hydration
observed by CRISM in one area of GT corresponds to elevated DAN-derived hydration, while the
lower CRISM hydration in another area of GT does not correspond to a significantly lower DAN-
derived hydration. We find that CRISM measured lower hydration in areas with rough surface
texture and sand cover, while DAN bulk hydration is relatively insensitive to these characteristics.
DAN active neutron results also show that the stratigraphically higher section of GT has
significantly higher neutron absorption, which could be due to Fe- and Mn-rich diagenetic features.
Additionally, DAN results show that GT is enriched in hydrogen with respect to other, less clay-
rich units observed throughout the traverse, suggesting that subsurface clay minerals could be a

significant reservoir for the hydration measured by DAN in GT.

DAN WEH [wt.%]

CRISM 3 Micron

Band Depth

Figure 1. Map showing the study area with geomorphic features Vera Rubin ridge (VRR), Glen
Torridon (GT), and Greenheugh pediment (GP) labeled in white, and geologic units (Fedo et al.,
2022) “Pettegrove Point” member (PPm), “Jura” member (Jm), “Knockfarril Hill” mem- ber (KHm),
“Glasgow” member (Gm), and “Stimson” formation (Sf) labeled in black (dashed where inferred).
The Jura member spans the VRR-GT boundary. DAN active WEH results are symbolized along the
Curiosity traverse (blue line). The basemap is a HiRISE mosaic (Calef 11l & Parker, 2016). A
CRISM 3 um band depth map is overlain on the HiRISE base. Several of the larger wind-blown
sand patches are labeled ’S’ and correspond to the lowest 3 pm areas.
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Figure 2. (a) Plot of simulated thermal neutron counts using the DAN active model geometry with
set subsurface neutron absorption cross section (12.6x10° cm?/g) and variable subsur- face
hydration (in water-equivalent hydrogen, WEH). (b) Plot of simulated thermal neutron counts using
the DAN active model geometry with set subsurface hydration (3.5 wt.% WEH) and variable
subsurface thermal neutron absorption cross section (Xabs). Statistical uncertainty error bars are
shown for the top and bottom curves in each plot.
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Hariharan J, Passalacqua P, Xu Z, et al. Modeling the Dynamic Response of River Deltas to Sea-
Level Rise Acceleration[J]. Journal of Geophysical Research: Earth Surface, e2022JF006762.

https://doi.ore/10.1029/2022JF006762
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ABSTRACT: Climate change is raising sea levels across the globe. On river deltas, sea-level rise
(SLR) may result in land loss, saline intrusion into groundwater aquifers, and other problems that
adversely impact coastal communities. There is significant uncertainty surrounding future SLR
trajectories and magnitudes, even over decadal timescales. Given this uncertainty, numerical
modeling is needed to explore how different SLR projections may impact river delta evolution. In
this work, we apply the pyDeltaRCM numerical model to simulate 350 years of deltaic evolution
under three different SLR trajectories: steady rise, an abrupt change in SLR rate, and a gradual

acceleration of SLR. For each SLR trajectory, we test a set of six final SLR magnitudes between 5
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and 40 mm/yr, in addition to control runs with no SLR. We find that both surface channel dynamics
as well as aspects of the subsurface change in response to higher rates of SLR, even over centennial
timescales. In particular, increased channel mobility due to SLR corresponds to higher sand
connectivity in the subsurface. Both the trajectory and magnitude of SLR change influence the
evolution of the delta surface, which in turn modifies the structure of the subsurface. We identify
correlations between surface and subsurface properties, and find that inferences of subsurface
structure from the current surface configuration should be limited to time spans over which the sea
level forcing is approximately steady. As a result, this work improves our ability to predict future

delta evolution and subsurface connectivity as sea levels continue to rise.
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Figure 1. (a) The 21 scenarios simulated, grouped by trajectory of sea-level rise (SLR). (b)
Representative final pyDeltaRCM topographies for each of the different scenarios (Table 1) with
elevations shown relative to final sea levels.
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Shi M, Wu H, Zhao X, et al. Provenance study of the Miocene hemipelagic sediments in the
Shikoku Basin and implication for the earlier history of the Kuroshio Current/J]. Marine Geology,
2022, 450: 106861.
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ABSTRACT: The Kuroshio Current (KC) is the biggest western boundary current in the northwest
Pacific Ocean and plays an essential role in the Cenozoic climate evolution and ocean circulation
changes. Paleoceanography of the Shikoku Basin, located downstream of the KC region, is sensitive
to the evolution of the KC. In this study, the Miocene hemipelagic sediment supply in the Shikoku
Basin has been investigated on sediments from lithologic Unit Il of IODP Site C0011 using a
combination of rock magnetism, Sr isotope composition, grain size analysis, and calcareous
nannofossil study. Integrated results reveal that multidomain (MD) (titano-) magnetite
concentration increases in the upper part of Unit 111 since ~10-11 Ma with elevated 87Sr/86Sr values
(0.712-0.714) and fining up sediment grain size. Magnetic parameters, Sr isotope composition, and
grain size, as reliable indicators of sediment sources, have been used to discriminate the geological

sources of the sediments and attribute the increase in MD (titano-) magnetite concentration to the
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increasing detrital input from the East China Sea (ECS), which is rich in fine-grained particles and
coarse-grained magnetite and have high 87Sr/86Sr ratio (0.712-0.727). Furthermore, the intensified
western boundary current later became known as the KC is interpreted as a plausible reason for
increasing fine-grained flux from the ECS. Our study provides a much earlier record of the KC at
~10-11 Ma, giving new insight into understanding the Cenozoic ocean circulation changes and

climate evolution in the northwest Pacific Ocean.
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Figure 1. Map of the Shikoku Basin. Red point showing the International Ocean Discovery Program
(IODP) Site C0011. Violet points showing the calculated locations of Site C0011 from ~12 Ma to present
(Expedition 322 scientists, 2010). Blue point showing position of C0011 at ~10 Ma based on the plate
reconstruction (Wu et al., 2016). Light yellow points showing the IODP Site C0012 (Expedition 322
scientists, 2010), ODP Sites 808, 1173 and 1174 (Shipboard Scientific Party, 1991; Shipboard Scientific
Party, 2001a, Shipboard Scientific Party, 2001b).
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Figure 2. (a) Down-core variations of magnetic parameters for Site CO011. Magnetic composition-
dependent parameter S-ratio (S-100, S-300), shipboard volume magnetic susceptibility (k) recovered
during IODP Expedition 322 (Expedition 322 scientists, 2010), magnetic concentration-dependent
parameters y and SIRM, magnetic granulometric parameter ARM/SIRM, depth profiles of illite in bulk
sediment (Underwood and Guo, 2013) and 87S1/86Sr. (b, c¢) Grain size analyses for the hemipelagic
samples from Site C0011. (d) Cross-plots of magnetic parameters x and SIRM. (e) Cross-plots of
magnetic parameter ARM/SIRM and average diameter. (f) Cross-plots of magnetic parameter
ARMY/SIRM and Sr isotope composition. Rudy red and baby blue symbols representing samples from
the upper part and the lower part of Unit III from Sites C0011 and C0012, respectively. 87St/86Sr of the
upper Shikoku Basin sediments from Site CO011 between 4.2 and 3.1 Ma was obtained by Saitoh et al.
(2015) showed with age. Gray symbols show samples from adjacent Site C0012 since 7 Ma. Gray, blue
and green shadings indicate the 95% confidence intervals in the linear regression results of sediments
since 7 Ma, sediments from Unit III of Site C0012, and sediments from Unit III of Site C0011,

respectively.
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LiuDB, MiX, LiuS S, et al., Multi-phased ASM evolution and rainfall response during Heinrich
Stadial 5 [J]. Research Square, 2022.

https://doi.org/10.21203/rs.3.rs-1687308/v1
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ABSTRACT: Changes in Asian summer monsoon (ASM) circulation and regional precipitation
were reconstructed from stalagmite 6'%0 and trace element records from Wulu Cave in southern
China, covering Chinese Interstadial (CIS) 13 to Heinrich Stadial (HS) 5. During HS 5, the evolution
of 8'%0 -based ASM can be divided into four stages, i.e., an abrupt onset/termination and unstable
mid-HS 5 (a slow ASM decline followed by a stepwise ASM strengthening). The extent of ASM

weakening in mid-HS 3, relative to the mean §'%0 value, reaches 58% of the total magnitude of HS
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5. In contrast, multi-stage variability is less clear in element-inferred rainfall variations, which
feature a stadial/interstadial pattern. During CIS 13, large-amplitude element oscillations are
accompanied by a rapid decline at the onset of HS 5, with a limited range of variability in HS 5. The
rainfall reduction in mid-HS 5, in comparison with the mean level, approximates 33% of the full
event, practically equivalent to that during Chinese Stadial (CS) 14. It suggests a pronounced
sensitivity of ASM and an inertial precipitation response to HSs. During HS 5, a cooling in the
eastern tropical Pacific could favor a formation of La Nifa state and a wetting in southern China.
The timing of HS 5 in our record (48.53+0.12 ka, 47.19+0.12 ka) agrees well with the central age
of spatially-separated cave records (48.72+0.14 ka, 47.35+0.24 ka). At the onset of HS 5, Asian
hydroclimate changes are coeval with bipolar ice-core records, but lead the Greenland warming by
300 years at the termination or are synchronous with Greenland records via atmospheric CHy
constraints. This at least implicates that the monsoonal rainfall is less sensitive to climate

perturbations during HS 5.
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Figure 1. Isotopic and growth rate records of sample Wu88. (A) growth rate, (B) 5180, (C) 8®°C. Gray
and color bars indicate CS 14 and four stages of HS 5 following the 5180 record, respectively. Dashed
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line in Figure C depicts the mean value of §'*C record, while solid and dashed lines in Figure B denote
the mean value and one standard deviation, with dating results and errors shown below. Purple and blue
diamonds illustrate the onset and end of HS 5. Arrowed lines display multi-phased ASM variability in
HS 5.
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Figure 2. Dynamical link of Asian hydroclimate and other geologic records. (A) Wu88 820 record, (B)
atmospheric 8'80 inferred fractionation changes by the global terrestrial biosphere (A:Lanp), representing
a latitudinal shift of tropical rainfall (Seltzer et al., 2017), (C) NEEM O excess, a proxy for low-latitude
hydrological cycle (Guillevic et al., 2014). Bold pink line: three-year running average. (D) Wu88
elemental PC1 record, (E) concentrations of tropical and subtropical arboreal taxa (dark green) and
bilobate phytoliths (light green) (Zhang et al., 2020), (F) microcodium 380 record from the southeastern
Loess Plateau (Zhang et al., 2022), and (G) sea surface difference between western and eastern tropical
Pacific (Data source from Supplementary Fig. 6). The blue bar displayed HS 5, and the dotted line
depicted ASM rise in late HS 5.
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Wang, Y, Bodin, S, Blusztajn, J S. Orbitally paced global oceanic deoxygenation decoupled from
volcanic CO; emission during the middle Cretaceous Oceanic Anoxic Event 1b (Aptian-Albian
transition) [J]. Geology, 2022.

https://doi.org/10.1130/G50553.1
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ABSTRACT: The ongoing oceanic oxygen loss will have a profound impact on the distribution
and density of life on Earth. However, drivers of the initiation and termination of global oceanic
deoxygenation are poorly understood. Here we present a thallium isotope record that reveals three
rapid (50 k.y.) global deoxygenation intervals during the mid-Cretaceous that postdate massive
volcanism by at least 1 m.y. New strontium isotope data reveal gradually enhanced continental
weathering under a warmer climate following volcanism. However, global deoxygenation occurred
only under the combined influences of a long-term increase in weathering rates in a warmer climate
and short-term orbital modulation that led to atmospheric-circulation reorganization. Interactions of
multiple drivers are consistent with the abrupt termination of each deoxygenation interval.
Dynamic oxygenation responses in the mid-Cretaceous highlight the role of these processes for

understanding the consequences and potential termination of the current oceanic deoxygenation.
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Figure 1. Forcing mechanisms of oceanic oxygenation changes in Oceanic Anoxic Event (OAE) 1b. (A)
Orbital parameters (Laskar et al., 2004). Eccentricity is in black and precession in gray. (B) Qualitatively
estimated extent of deoxygenation is based on shale deposition and £2°Tl records of the Briers section.
HN horizon noir levels. (C) Nannofossil-based temperature reconstructions (Bottini and Erba, 2018). (D)
Weathering fluxes from ¥’Sr/*Sr in Figure 3. (E) Volcanism from Os isotopes (Matsumoto et al., 2020).

Magnitude of volcanism is not to scale.
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Petrizzo M R, Amaglio G, Watkins D K, et al. Biotic and paleoceanographic changes across the
Late Cretaceous Oceanic Anoxic Event 2 in the southern high latitudes (IODP Sites U1513 and
Ul516, SE Indian Ocean)[J]. Paleoceanography and Paleoclimatology, e2022PA004474.

https://doi.org/10.1029/2022PA004474

WE: % Cenomanian/Turonian 1 5% (93.9 Ma) [ KFFEHAF T OAE 2 J& 5 2 ) A ERERAE
RIRBN A Dy 7 A A A ) i LR REAS R e R AR, BRAT BT TR A [ B
PR RILTHRI U513 AT U516 B FLATEME, IX ettt 0 T 1145 /K it RO 74 e e
g AP IR AN 59°-60°S), itk | HEERE LR A HIX OAE 2 1Y e Bl 5%
B A A TR AL T RS R A A EAESE o SRR A FL L TR HUAE BRI 43 A A
F BB RRK 2 R B 5%, FEAPEAN I s KR B AR AL CRE, ULS13 A1 T2
R /R TR PO PG AL PR, R EZEE U1516 Himi B . T OAE 2 J2 BUiIRs 2 /KB 7 Z b,
HAFRKA S AL B g, TR R R AR, WE A LR RS PR . T OAE2 2
Bl & LT 5e 4t i A R E %, S R RO AR P 0 IR CaCOs & B SR H:
AMER R AR R DL T CaCOs RUGAI BRI — 3. i A2 s 1 s ik
TR A DB 2K PR AN, RN AR KA.

ABSTRACT: Oceanic Anoxic Event 2, spanning the Cenomanian/Turonian boundary (93.9 Ma),
was an episode of major perturbations in the global carbon cycle. To investigate the response of
biota and the paleoceanographic conditions across this event, we present data from International
Ocean Discovery Program sites U1513 and U1516 in the Mentelle Basin (offshore SW Australia;
paleolatitude 59°-60°S in the mid-Cretaceous) that register the first complete records of OAE 2 at
southern high latitudes. Calcareous nannofossils provide a reliable bio-chronostratigraphic
framework. The distribution and abundance patterns of planktonic and benthic foraminifera,
radiolaria, and calcispheres permit interpretation of the dynamics of the water mass stratification
and provide support for the paleobathymetric reconstruction of the two sites, with Site U1513
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located northwest of the Mentelle Basin depocenter and at a deeper depth than Site U1516. The
lower OAE 2 interval is characterized by reduced water mass stratification with alternating episodes
of enhanced surface water productivity and variations of the thickness of the mixed layer as
indicated by the fluctuations in abundance of the intermediate dwelling planktonic foraminifera.
The middle OAE 2 interval contains lithologies composed almost entirely of radiolaria reflecting
extremely high marine productivity; the low CaCOj3 content is consistent with marked shoaling of
the Carbonate Compensation Depth and ocean acidification because of CaCO3 undersaturation.
Conditions moderated after deposition of the silica-rich, CaCOs-poor rocks as reflected by the
microfossil changes indicating a relatively stable water column although episodes of enhanced

eutrophy did continue into the lower Turonian at Site U1516.
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Figure 1. Stratigraphic correlation between sites U1513 and U1516. Site U1513: core recovery and
core photo from Huber etal. (2019a); planktonic foraminifera and calcareous nannofossil
biostratigraphy, age, carbon isotope bulk carbonate, interval of low CaCO3 content and total organic
carbon (TOC) according to this study (see Figure 2). Site U1516: data are from Petrizzo et al. (2021)
except planktonic foraminifera Zones and the position of the Cenomanian/Turonian boundary that
have been revised in this study (see text for explanation). For the identification of the OAE 2 interval
(light green band) see explanation in the text. Abbreviations: m rCCSF = revised Core Composite
depth below Sea Floor in meters; PFZ = Planktonic Foraminifera Zones; CNZ = Calcareous
Nannofossils Zones; helv. eq = Helvetoglobotruncana helvetica equivalent; W. archaeocretacea
eq. = Whiteinella archaeocretacea equivalent; R. cushm. eq., cush. eq. = Rotalipora cushmani

equivalent; T. greenh. eq., gre. eq. = Thalmanninella greenhornensis equivalent.
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Straume, E, Nummelin, A, Gaina, C,et al. 2022, Climate transition at the Eocene—Oligocene
influenced by bathymetric changes to the Atlantic—Arctic oceanic gateways [J], PNAS, 17, 2022,
e2115346119.
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ABSTRACT: The Eocene—Oligocene Transition (~33.9 Ma) marks the largest step transformation
within the Cenozoic cooling trend and is characterized by a sudden growth of the Antarctic ice
sheets, cooling of the interior ocean, and the establishment of strong meridional temperature
gradients. Here we examine the climatic impact of oceanic gateway changes at the Eocene—
Oligocene Transition by implementing detailed paleogeographic reconstructions with realistic
paleobathymetric models for the Atlantic—Arctic basins in a state-of-the-art earth system model (the
Norwegian Earth System Model [NorESM-F]). We demonstrate that the warm Eocene climate is
highly sensitive to depth variations of the Greenland—Scotland Ridge and the proto—Fram Strait as
they control the freshwater leakage from the Arctic to the North Atlantic. Our results, and proxy
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evidence, suggest that changes in these gateways controlled the ocean circulation and played a
critical role in the growth of land-based ice sheets, alongside CO2-driven global cooling.
Specifically, we suggest that a shallow connection between the Arctic and North Atlantic restricted
the southward flow of fresh surface waters during the Late Eocene allowing for a North Atlantic
overturning circulation. Consequently, the Southern Hemisphere cooled by several degrees paving
the way for the glaciation of Antarctica. Shortly after, the connection to the Arctic deepened due to
weakening dynamic support from the Iceland Mantle Plume. This weakened the North Atlantic
overturning and cooled the Northern Hemisphere, thereby promoting glaciations there. Our study
points to a controlling role of the Northeast Atlantic gateways and decreasing atmospheric CO2 in

the onset of glaciations in both hemispheres.
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Figure 1. Changes in Iceland mantle plume activity leading to changes in SSTs and ocean
ventilation. (A) The benthic oxygen isotope values (8'%0) across the EOT and the paleogeographic
configuration for 34 Ma (Left) and 33 Ma (Right), with the dynamic support from the Iceland plume
and sketched ocean circulation for the respective gateway configurations based on this study. (B)
The change in SSTs forms as a result of deepening the GSR (a likely paleogeo- graphic change from
34 to 33 Ma). (C) Change in ocean ventilation is measured as the trend in the vertical mean water

mass age when deepening the GSR.
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Garcia R F, Daubar I J, Beucler E, et al. Newly formed craters on Mars located using seismic and
acoustic wave data from InSight[J]. Nature Geoscience, 2022: 1-7.

https://doi.org/10.1038/s41561-022-01014-0
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ABSTRACT: Meteoroid impacts shape planetary surfaces by forming new craters and alter
atmospheric composition. During atmospheric entry and impact on the ground, meteoroids excite
transient acoustic and seismic waves. However, new crater formation and the associated impact-
induced mechanical waves have yet to be observed jointly beyond Earth. Here we report
observations of seismic and acoustic waves from the NASA InSight lander’s seismometer that we
link to four meteoroid impact events on Mars observed in spacecraft imagery. We analysed arrival
times and polarization of seismic and acoustic waves to estimate impact locations, which were
subsequently confirmed by orbital imaging of the associated craters. Crater dimensions and
estimates of meteoroid trajectories are consistent with waveform modelling of the recorded
seismograms. With identified seismic sources, the seismic waves can be used to constrain the
structure of the Martian interior, corroborating previous crustal structure models, and constrain
scaling relationships between the distance and amplitude of impact-generated seismic waves on

Mars, supporting a link between the seismic moment of impacts and the vertical impactor
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momentum. Our findings demonstrate the capability of planetary seismology to identify impact-

generated seismic sources and constrain both impact processes and planetary interiors.
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Figure 1. Sketch of meteor impact phenomena and their recordings by InSight. a, Sketch of physical
processes during meteoroid entry and impact, and effective sound speed profile from impact
direction to InSight extracted from MCD. Labels in parentheses locate the sources of the main
acoustic and seismic arrivals. Figure is not to scale. b, Impact location and estimated meteoroid
entry path on CTX mosaic background. Polarization of main acoustic signals is depicted at InSight
location. ¢, Spectrogram of vertical component of ground velocity (VELZ) for S0986¢ seismic event,
showing the three main seismic arrivals (P, S, X1) and the three main acoustic arrivals (A1, A2, A3).
P, S and A3 are associated with the impact source; X1, Al and A2 are associated with the two
airbursts. Signal energy is provided in Amplitude Spectral Density (ASD). d, Coherence as a
function of time and frequency. e, Phase relation between vertical and horizontal ground velocities
at maximum coherence value. Times are provided relative to event start time(5 September 2021,
05:23:58.00 utc).
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Hagemans K, Urrego D H, Gosling W D, et al. Intensification of ENSO frequency drives forest
disturbance in the andes during the holocene [J]. Quaternary Science Reviews, 2022, 294, 107762..

https://doi.org/10.1016/j.quascirev.2022.107762
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ABSTRACT: The biodiverse montane forests of the tropical Andes are today frequently disturbed
by rainfall-driven mass movements which occur mostly during extreme El Nifio events. Over the
coming decades these events are projected to double under the 1.5 °C global warming scenario. The
consequent increased rainfall and mass movement events likely present an elevated risk to millions
of people living in the Andes. However, the impact of more frequent rainfall extremes remains
unclear due to a lack of studies that directly link past changes in El Nifio-Southern Oscillation
(ENSO) frequency to forest and landscape disturbance patterns. Here, we present the first Holocene

palaeoecological record from Laguna Pallcacocha, southern Ecuador, a key site for El Nifio
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reconstructions. We demonstrate that for the past 10,000 years plant taxa indicative of recolonization
— such as Alnus acuminata — covary with El Nifio-induced flood layers in the lake. An amplified
forest disturbance pattern is observed in the late Holocene, suggesting enhanced slope instability
following deforestation. The temporal pattern is not explained by tree line fluctuations or human
impact, while the latter does amplify the impact of ENSO on landscape disturbance. Spatial
correlations between modern ENSO and precipitation are consistent with a regional comparison of
Holocene records of landscape disturbance. Our results indicate that climate extremes, such as those
associated with future intensification of El Nifio, combined with ongoing land use change will

increase the frequency of mass movements elevating risks for millions of people in the Andes.
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Figure 1. High elevation sites included in the regional analysis (details see Table 1). Overlay shows
correlation between November—January averaged precipitation and the NINO 1.2 index 1979-2019
for Ecuador and Southern Colombia. Correlation obtained with KNMI Climate Explorer
(https://climexp.knmi.nl/start.cgi) and adjusted in ArcGis (Environmental Systems Research
Institute, 2014).
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Menking J A, Shackleton S A, Bauska T K, et al. Multiple carbon cycle mechanisms associated
with the glaciation of Marine Isotope Stage 4 [J] Nature Communications, 2022, 13, 5443.
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ABSTRACT: Here we use high-precision carbon isotope data (3*C- CO2) to show atmospheric
CO; during Marine Isotope Stage 4 (MIS 4, ~70.5-59 ka) was controlled by a succession of
millennial-scale processes. Enriched §'3C- CO; during peak glaciation suggests increased ocean
carbon storage. Variations in §*C- CO; in early MIS 4 suggest multiple processes were active during
CO; drawdown, potentially including decreased land carbon and decreased Southern Ocean air-sea
gas exchange superposed on increased ocean carbon storage. CO» remained low during MIS 4 while
813C- CO;, fluctuations suggest changes in Southern Ocean and North Atlantic air-sea gas exchange.
A7 ppm increase in CO- at the onset of Dansgaard-Oeschger event 19 (72.1 ka) and 27 ppm increase
in CO2 during late MIS 4 (Heinrich Stadial 6, ~63.5-60 ka) involved additions of isotopically light
carbon to the atmosphere. The terrestrial biosphere and Southern Ocean air-sea gas exchange are

possible sources, with the latter event also involving decreased ocean carbon storage.

32


https://doi.org/10.1038/s41467-022-33166-3

V]

-30

T o
& =22
a FT
w
%)
[a]
w
k=e)
58
— 6.0
£
g 65
O
2 3
[
%6‘5
53
- 2
%ﬁg
c
%B:}
a

DO20 DO192  DO18.1 DO18 HS6 DO16A17
=z
40 @
T
- 45 o
£ —
5-42 o
w *®
A4 =P
8
240
2 9
B
200 2
6.0 — , @ Taylor Glacier
Ed
N alos Dome
S 65 —
e
FKO
7.0 —
3F
i:\
2 gg
ik
-
3 23
3 §-8
¥
BI:
Ill’\inslslllllllly‘l\\Illllh\dLilaj a
75 70 65 60 55
Age (ka)

Figure 1. High-resolution CO; and §'3C-CO; data from Taylor Glacier. a Data from this study (red
circles) show larger variations in 8'*C-CO> across the transition into and out of Marine Isotope Stage
4 (74-59.5ka) than preexisting 8'*C-CO, data (white and blue circles) spanning the last two
deglaciations (140—125 and 21-11 ka) and the Heinrich Stadial (HS)-4/Dansgaard—Oeschger (DO)-
8 transition (46-36 ka). The large changes in the §!*C-CO; are surprising given the relatively smaller
magnitude changes in CO,. Mean ocean temperature data derived from ice core noble gas
measurements show relatively smaller changes across the MIS 5-4 transition relative to the last two

deglaciations. North Greenland Ice Core Project (NGRIP) and EPICA Dome C (EDC) water
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isotopes are plotted for chronological and climatic reference. b An enlarged plot of the interval 77—
55 ka compares Taylor Glacier data to preexisting CO2 and §'*C-CO; data from EPICA Dome C
(EDC), EPICA Dronning Maud Land (EDML), and Talos Dome ice cores. The interval is divided
into four subintervals (I - IV) highlighting distinct modes of change in CO, and §'3C-CO, discussed

in the text. Error bars represent 1-sigma analytical uncertainty..
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Figure 2. Model framework for interpreting CO; and §'*C-CO, data. a Compilation of model results
estimating the change in §'3C-CO; per unit change in CO» concentration due to different processes,
indicated by shaded regions (see Supplementary information for details). The shading for the
processes relevant to our interpretations in each interval is drawn on the following panels. b The
temporal evolution of 3'3C-CO; and CO2 data is indicated by the color gradient on the markers. c—
f 813C-CO; and CO; data from each of the four intervals I-IV shown in Fig. 1. Note the axes are
scaled differently for each panel. ¢ §'*C-CO; and CO; change during Dansgaard-Oeschger (DO) 19

(interval I in Fig. 1). The data are most consistent with an increase in Southern Ocean air—sea gas
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exchange rates or a release of land carbon. d §'3C-CO, and CO; data for the negative isotope
excursion and enrichment during the Marine Isotope Stage (MIS) 5-4 transition (interval II in Fig.
1). The negative excursion is consistent with a large pulse of land carbon combined with increasing
efficiency of the biological pump. The growth of Antarctic sea ice and continued deep carbon
storage could explain the following enrichment trend. e Oscillations in §'*C-CO, during MIS 4 were
accompanied by very little change in CO, concentration (interval III in Fig. 1), perhaps due to
fluctuations in Antarctic sea ice. f The §'3C-CO, and CO, change during Heinrich Stadial (HS) 6
(interval IV in Fig. 1). The large decrease in 613C-CO2 is consistent with decreasing Antarctic sea
ice and increased air—sea gas exchange in the Southern Ocean. The youngest data (60.9—59.6 ka)

are consistent with decreasing efficiency of the biological pump.

- DO 19 DO 8 BA PB
£
8
(@]
®
]
- Q
250 8
N
=)
ge]
2
— 200
£
o
O
Q
[®]
uck
V]

74 72 70 40 39 38 37 36 16 14 12 10
Age (ka)
Figure 3. Comparison of abrupt CO; changes. The negative isotopic excursion associated with the
CO; increase at Dansgaard—Oeschger (DO)-19 (red circles, this study) did not occur at other
Northern Hemisphere warming events with similar fast CO; increases, e.g. DO-8 or the Oldest
Dryas (OD)-Bglling—Allered (BA) transition (blue circles). Water stable isotope data are from
North Greenland Ice Core Project (NGRIP).
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Yin Q Z, Wu Z P, Berger A, et al. Insolation triggered abrupt weakening of Atlantic circulation at
the end of interglacials[J]. Science, 2021, 373(6558): 1035-1040.

https://doi.org/10.1126/science.abg1737

TE: FEVF 2l U I E) 1 1] K0 AR S0 0 R AR A Bl (ELRE 51 A2 AL o Ay Ji P47
IHANEAE . AR, FRATIEY] 1755 2 80 JFAERIUKIIR NG, FAE— R &R
SURRIBME, RTBRER, HRESEAERREL. D HRERXIGFE, E50kT
KPEEAR B IR A5, SR IR g AT 2 TR BRAPIRES , FFARREE #4214
AR A AE A o JXAN LA B BABRRAN S AT 4z 22 ) R 0K S A5t o 3 742 1 BRME R W e AE
28 L[] UK AR IR R AR IA BT EARAAEH -

ABSTRACT: Abrupt cooling is observed at the end of interglacials in many paleoclimate records,
but the mechanism responsible remains unclear. Using model simulations, we demonstrate that there
exists a threshold in the level of astronomically induced insolation below which abrupt changes at
the end of interglacials of the past 800,000 years occur. When decreasing insolation reaches the
critical value, it triggers a strong, abrupt weakening of the Atlantic meridional overturning
circulation and a cooler mean climate state accompanied by high-amplitude variations lasting for
several thousand years. The mechanism involves sea ice feedbacks in the Nordic and Labrador Seas.
The ubiquity of this threshold suggests its fundamental role in terminating the warm climate

conditions at the end of interglacials.
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Figure 1. Insolation-only induced variations in AMOC and temperature during MIS-5e. (A) Mean

summer insolation averaged over the four latitudes 55°N, 65°N, 75°N, and 85°N; the mean insolation of

the half-year NH astronomical summer is obtained by dividing the total irradiation received during the

half-year summer by the length of the half-year summer. (B and C) AMOC intensity (B) and annual mean
SST (C) in the North Atlantic region. (D) Difference in annual mean SST between points “B” and “A.”

(E) Difference in annual surface air temperature between points “B” and “A.” The results are from the

simulation with only insolation varying and CO, fixed at 280 ppmv. A 100-year running mean is applied
on the simulated AMOC and SST.
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Xiong Z, Zhai B, Algeo T J, et al. Intensified aridity over the Indo-Pacific Warm Pool controlled
by ice-sheet expansion during the Last Glacial Maximum/[J]. Global and Planetary Change, 2022:
103952.
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ABSTRACT: The magnitude, direction and cause of precipitation changes across the Indo-Pacific
Warm Pool (IPWP) during the Last Glacial Maximum (LGM) remain elusive. In particular, it is still
inconclusive whether tropical or extratropical factors controlled such precipitation changes.
Determining the spatio-temporal distribution of precipitation in the IPWP during the LGM is a valid
strategy to address this issue, but the existing precipitation records are dominantly from maritime
continents and marginal seas, with few data from pelagic oceans. In order to fill this gap, we
analyzed the oxygen isotopic compositions of single Ethmodiscus rex diatom frustules (8'30g. rex)
from a sediment core (WPD-03) consisting of laminated diatom mats (LDMs) in the eastern

Philippine Sea (EPS). 8'80k. rex was controlled mainly by sea-surface salinity variation and, thus,
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can reflect open-ocean precipitation changes across the IPWP. Our precipitation proxy records, in
combination with existing published data, reveal spatial patterns of precipitation change that
indicate overall drying across the IPWP during the LGM. Based on a comparison of paleoclimatic
records with modeling results, we propose that extra-tropical factors (ice-sheet size) controlled
precipitation variability in the [IPWP during the LGM through a combination of zonal shifts of ENSO
and meridional migration of the ITCZ. Strong aridity during the LGM prevented formation of a
subsurface barrier layer and, hence, allowed accessing of sufficient nutrients to surface waters,
stimulating blooms of E. rex and subsequent formation of LDMs in the IPWP. These findings

suggest an important role for high-latitude climate in the tropical hydrological cycle during the LGM.
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Figure 1. Modern hydroclimate of the IPWP. Annual mean precipitation rate (a) and SSS (b) over
the IPWP, and (c) monthly precipitation rate and SSS in the study area (15-21°N, 136—-140°E).

Precipitation and SSS data from historical records (1981-2010) available at
www.esrl.noaa.gov/psd/data/gridded/data.cmap.html and
www.esrl.noaa.gov/psd/data/gridded/data.godas.html  respectively. (d) Depth profiles of

39


http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
http://www.esrl.noaa.gov/psd/data/gridded/data.godas.html

temperature, salinity, and in situ density anomaly in the study site (core WPD- 03); data from this
study. (e) Depth profiles of long- term annual mean concentrations of phosphate, nitrate, and silicate
around the study site (core WPD- 03); data from the World Ocean Atlas (WOA) 2013 (Garcia et al.,

2013).
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Figure 2. Age-depth profiles for (a) 8'80k. rex in the >154 pm and 63—154 pum fractions, (b) SST
from core MD98-2181 (Stott et al., 2002), (c) change in surface-water 6180 related to global ice
volume (3'%05;,) (Waelbroeck et al., 2002), (d) 8'8Ogyw.iv calculated from 8'80g rex in the >154 pm
and 63—154 pum fractions, (e) illite/ smectite ratio, and (f) PC1 score based on principal component
analysis of small diatoms (i.e., excluding mat-forming diatom E. rex) (Zhai et al., 2014) in core
WPD-03. In (d), 8'®Osw-iv changes were calculated from 8'30g, rex by accounting for changes in SST
(Stott et al., 2002) with a diatom 8'30-temperature coefficient of —0.2%o/°C (Moschen et al., 2005)
and correcting for variations in global ice volume (Waelbroeck et al., 2002). In (f), PC1 score is a
measure of SSS in the EPS, with larger values linked to lower SSS (Zhai et al., 2014); the dashed
line indicates a PC1 score of zero. LDM: laminated E. rex diatom mats, DC: diatomaceous clay, and
PC: pelagic clay.
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WE: EhEFENRIR LRI T2 B8R IA AR A A 8N SR, /N
Gy LA WIAIE ST LA I B 58 T e A A 21 T Rl S T IR R B 1 7 5%
IV A BRI A 2 B ) SR IF A A bk (b 2 S AR AR SR 7T B T 1 R H S
(RS 5 12 DX H A X IR TH A s AR R B2 & — B AR M = 22 s -y L3
HINFEG, BATMIMIAELS TR W, X P FE R Ik AT OB I B R it 56T 1 AR 4
0.787~0.819 Ma (L8), H 5L T IHA & AL E A 1 iE 4 0.819~0.865 Ma (S8)
HMIEEA 0.943~989 Ma (S9). Bk, RITAMH A B T 34N IH A @ RIS S
TR, EZH X R IE e [ NS A ) 2 X A

ABSTRACT: Numerous open air Palaeolithic and hominin fossil sites have been discovered in the
Qinling Mountain Range (QMR) in central China. However, a small number have been confirmed
as dating to the Early Pleistocene. The present study introduces stratigraphic and chronological
studies of the newly discovered Guanmenyan Palae-olithic site, Danjiangkou Basin, and Yuelianghu
Palaeolithic site, Yunxian Basin along the Hanjiang River Valley, in the southern QMR. The artefacts
recovered from Guanmenyan and Yuelianghu are consistent with Early Palaeolithic assemblages
found at other localities in the region. Based on magnetostratigraphy and correlation with the loess-
palacosol sequence from the central Chinese Loess Plateau, our dating results show both open-air
sites can be dated to the Early Pleistocene. Guanmenyan is dated ~0.787-0.819 Ma (L8), while the
upper and lower Palaeolithic cultural layers of Yuelianghu are dated ~0.819-0.865 Ma (S8) and ~
0.943-989 Ma (S9), respectively. Thus Guanmenyan and Yuelianghu help to fill a chronological gap

in the Palaeolithic record of Hanjiang River Valley and establish the QMR as a major region
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documenting this important period of hominin evolution in China.
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Figure 1. Location of Early Pleistocene archaeological sites in China.

The Chronology of Early Pleistocene hominin fossils and Paleolithic sites in China
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Figure 2. Distribution of the chronology of Early Pleistocene hominin fossils and Palaeolithic sites in
China. (the sites marked with blue, red, green, and purple are those in the Nihewan Basin in Northern
China, the Qinling Mountain Range (QMR) in Central China, the lower reaches of the Yangtze River in
Central China, and Southern China, respectively).
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